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Why we have cross product only in
dimension 3?
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As we have quantities in physics, which have only magnitude, there are also quan-
tites, which have also one or more directions. We can call them vectors or generally
tensors. An example could be magnetic permeability:

~B = µ ~H

where µ = 4 ∗ 10−7H/m. So, in free space are ~B and ~H colinear. However, there
are exotic materials, where µ̄ is not a scalar, but tensor with two directions in every
point. Then ~B and ~H is no longer colinear.

Tensors are defned in mathematics as multilinear mappings

T (
︷ ︸︸ ︷
V, V, ..., V ,

︷ ︸︸ ︷
V ∗, V ∗, ..., V ∗)→ R,

where we have r copies of n-dimensional vector sprace V and s copies of its dual
V ∗. 1

So, we could have tensors of type (r, s) with r contravectors (vectors) and s covec-
tors (forms). We will work with tensors of type (0, r). Antisymmetric tensor (0, 2) is a
tensor with the property T (~u,~v) = −T (~v, ~u). And we could define antisymmetrization
by the following prescription:

TA(~u,~v) =
1

2!
(T (~u,~v)− T (~u,~v))

Completely antisymmetric tensor is a tensor, which is antisymmetric in every 2
arguments. When it is of type (0, p), we call it a p - form. A p-form has at most

(
n
p

)
independent components.2 We could also define a q -vector, which has also at most(
n
q

)
independent components, in similar way.
We can define a wedge product by the following definition from two 1 - forms p̃

and q̃:

p̃ ∧ q̃ = p̃⊗ q̃ − q̃ ⊗ p̃

The key observation is now the following: let’s have a q-vector T , T i...k = T [i...k]

and dual-form w̃, which maps q-vectors to (n− q)-forms by the equation
1We could choose a basis in every point of a vector space V . Then we could take an orthonormal

vector to every element of the basis and we obtain a reciprocal basis.
2The algebra of all p-forms in n-dimensional vector space V is called Grassmann algebra and it

has 2n elements.
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Aj..l =
1

q!
wi..kj..lT

i...k.

This is symbolically

Ã = ∗T.

We could write the star of cross product like a wedge product of two vectors:

∗(~a×~b) = ~a ∧~b

but this is possible only in dimension 3 !! (We identify vectors and forms in
dimension 3!)
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