
1. Banach space

Definition 1.1. Norm is a nonnegative function ‖v‖ from vector space VC (over
complex numbers) to real numbers R, ‖.‖ : VC → R, such that the following prop-
erties are fulfilled:

• ‖a‖ ≥ 0, ‖a‖ = 0 ⇔ a = 0
• λ ∈ C, ‖λa‖ = |λ| ‖a‖
• ‖a+ b‖ ≤ ‖a‖+ ‖b‖

Definition 1.2. Metric is non-negative function from V × V to R, which must
fulfill the following:

• ρ(v, w) ≥ 0 and ρ(x, y) = 0 ⇔ x = y
• ρ(λv, λw) = λρ(v, w) , ρ(v, w) = ρ(w, v)
• ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

Exercise 1.3. Norm is uniformly continuous function.

We have immediately that ρ(x, y) = ‖x− y‖ is a metric.

Definition 1.4. We will say that vector space X with a norm ‖.‖, is a Banach
space, when the metric space (X, ρ) with the metric ρ induced by this norm ‖.‖ is
complete.

Example 1.5. Continuous functions f(x) ∈ C(K) on a compact space K form
with the maximum norm, supx∈K(|f(x)| : x ∈ K), Banach space.

Example 1.6. Space of all sequences {xn}n∈N, such that ‖x‖p = (
∑∞
i=1 |xi|p)1/p

is finite, form for given p ≥ 1 Banach space.

Definition 1.7. We say that a map (., .) : V × V → R ( or C) is a scalar product
when it fulfills:

• (a, a) ≥ 0, and (a, a) = 0⇔ a = 0

• (a, λb) = λ̄(a, b), (λa, b) = λ(a, b), (a, b) = (b, a)
• (a, b+ c) = (a, b) + (a, c)

Definition 1.8. We say that a Banach space H is a Hilbert space, when the metric
space (H, ρ) is complete in the metric induced by this ‖a‖ =

√
(a, a).

Example 1.9. The space of square integrable functions f : R → R with a norm√∫
R |f |2 dx <∞ is Hilbert space.

Example 1.10. The space of sequences xn with the norm defined in (1.6), p = 2,
is Hilbert space.

We have two basic notions of a basis in infinite dimensional Hilbert spaces. We
have orthonormal basis and algebraical Hamel basis.

Definition 1.11. We say that system of vectors L creates orthonormal system,
when all vectors from this system are perpendicular to each other and they have
norm 1. System is a basis, when we could not add any further functions to this
system.

Corollary 1.12. Every Hilbert space has an orthonormal basis.

Proof. Could be done by Zorn’s lemma. �
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Definition 1.13. Topological space is separable, when there exists countable dense
set.

Corollary 1.14. Hilbert space is separable, if and only if there exists countable
orthonormal basis.

Proof. If there is uncountable orthonormal basis, then the space is not separable,
because ‖ek − en‖ =

√
2 for the elements of the basis ek and en. �

2. Bounded operator

We will develop now the concept of bounded linear operators. Bounded operator
maps bounded sets on bounded sets. The following lemma holds:

Lemma 2.1. The following is equivalent for linear mapping A : X → Y , where X
and Y are normed vector spaces :

• A is continuous
• A is continuous in 0
• A is bounded on BX
• A is bounded

Proof. When A is continuous then is continuous in 0.
If A is continuous in 0, then for all ε > 0 exists a δ > 0 such that

‖x‖ < δ ⇒ ‖A(x)‖ < ε.

There exists δ0 > 0, such that ‖A(x)‖ ≤ 1, when x < δ0. But then for every z ∈ Bm
holds ‖A(z)‖ = 1

δ0
‖A(δ0z)‖ ≤ 1

δ0
.

Let ‖Ax‖ ≤ K for x ∈ Bm, then there is M < ∞ : ‖A(x)‖ ≤ M ‖x‖ for every
x ∈ X ; Let ε > 0, if x, y ∈ X: ‖x− y‖ < ε

M , then ‖Ax−Ay‖ ≤ M ‖x− y‖ < ε.
Then A is also uniformly continuous. �

Definition 2.2. We define the norm of linear mapping L : X → Y like ‖L‖ =
sup‖x‖≤1{‖Lx‖Y : ‖x‖X ≤ 1}

Exercise 2.3. When we consider the space of all linear mappings from normed
linear space X to normed linear space Y , Λ(X,Y ), with the norm defined in (2.2),
it is a Banach space when Y is a Banach space.

We say that for x and y in a Hilbert space H, x ⊥ y, when (x, y) = 0. We define
similarly x ⊥ A, where A is subspace of H and A ⊥ B, where A, B are subspaces
of H.

Definition 2.4. We define orthogonal complement of subspace M ⊂⊂ H like the
set of vectors x ∈M⊥, such that (x, h) = 0 for all h ∈M .

Lemma 2.5. Let M be closed subspace of Hilbert space H. Then for every x ∈ H
exists exactly one m0 ∈M , ‖x−m0‖ = dist(x,M).

Proof. Let’s suppose that x 6= 0. Otherwise we will put m0 = 0. The task is to
prove existence and uniqueness of an element of the set C = x−M , such that the
norm of this element, δ = dist(0, C) = dist(x,M), has minimal value. We will prove
the existence: the first observation is 0 6∈ C, so δ > 0 ; According to the definition
of distance, there exists a sequence yn ∈ C such that ‖yn‖ → δ. If we prove that
the sequence is Cauchy then there will exist y such that ‖y‖ = lim ‖yn‖ = δ.
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Sequence 1
2 (yn + yk) ∈ C. Therefore we have by rectangular rule that

‖yn − yk‖2 = 2(‖yn‖2 + ‖yk‖2)− ‖yn + yk‖2 ≤ 2(‖yn‖2 + ‖yk‖2)− 4δ2 → 0

The proof of uniqueness is also straightforward: let a ∈ C and b ∈ C are 2
vectors, such that we obtain the minimum value dist(0, C) for both of them. Then
again by rectangular rule

‖a− b‖2 = 2(‖a‖2 + ‖b‖2)− ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2)− 4δ2 → 0

�

We need also some geometrical characterization.

Lemma 2.6. Let M is a subspace of Hilbert space H. Then when x ∈ H and
m0 ∈ M , we have the following equivalence: ‖x−m0‖ = dist(x,M) if and only if
x−m0 ⊥M .

Proof. Let x−m0 ∈M⊥ and m ∈M . Then

‖x−m‖2 = ‖x−m0‖2 + ‖m−m0‖2 ≥ ‖x−m0‖2

So, we proved by Pythagoras theorem one implication, because ‖x−m0‖ = dist(x,M).
For the second implication:

(x−m0, x−m0) ≤ ‖x− (m0 + εm)‖ = ‖x−m0‖2 − ε(x−m0,m) + ε2 ‖m‖2

Because we have chosen ε > 0 arbitrary, we have (x−m0,m) ≤ 0. When we choose
ε < 0, we get opposite inequality. This means (x−m0,m) = 0. �

Definition 2.7. We say that vector space E is an algebraical sum of spaces M and
N , E = M⊕N , when every vector v ∈ E could be uniquely written as v = vM+vN ,
where vM ∈M and vN ∈ N . We have E = M ⊕N and M ∩N = ∅.

So, if E = M⊕N , then we can define projections PM (v) = vM and PN (v) = vN .
When E has also topological structure, we can define the following notion:

Definition 2.8. If W = M ⊕N , we say that W is a topological sum of M and N ,
W = M ⊕t N , if projections PM and PN are continuous.

We immediately see that PM is continuous if PN is continuous. If W is topolog-
ical sum of subspaces M and N , then both spaces M and N are closed. Contrary,
if W = M ⊕N and both spaces M and N are closed, then W = M ⊕t N .

Definition 2.9. We say that a continuous and linear operator P on Banach space
X, P : X → X is a projection, if P 2 = P .

If P is a projection, then I − P is projection and ‖P‖ ≥ 1.

Lemma 2.10. P : X → X:

• If P is a projection on Banach space X, then ker(P ) and Im(P ) are closed
subspaces X and X = ker(P )⊕t Im(P ).

• If M and N are closed subspaces of X, X = M ⊕t N , then exists P on X
such that M = kerP and N = ImP
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Proof. kerP is always closed subspace. But because ker(I − P ) = ImP , ImP is
also closed subspace. We can write

x = Px+ (I − P )x,

but Px is element of ImP and ker (I − P )x is element of kerP . kerP ∩ ImP = ∅
and the first result follows.

For the next statement: we can write x = xM + xN , where we define Px =
xN ; �

Now we define the notion of orthogonal projections ( or projectors) in Hilbert
spaces:

Definition 2.11. Let M is a closed subspace of a Hilbert space H. We define
projector P like the mapping, which projects orthogonally any v ∈ H to M , Pv ∈
M .

We see that projector P is a linear mapping and it is bounded. We see that
ImP = M and that kerP = M⊥ and ‖P‖ = 1. I − P is projector on M⊥.

Definition 2.12. We say that an operator A defined on Hilbert space H is Her-
mitian, if (Ax, y) = (x,Ay) for all x, y ∈ H.

Lemma 2.13. Operator A, defined on H is a projector, if and only if it is Hermit-
ian and A2 = A. If these conditions are fulfilled then Im(A) is a closed subspace
and it is composed from such elements x ∈ H that Ax = x.

Proof. When A is a projector, then A2 = A is from definition and it is Hermitian,
because (Ax, (I −A)x) = 0. And so (Ax, x) = ‖Ax‖2 ∈ R.

Contrary, when it is Hermitian and A2 = A. Let’s take y = limAxn, then
Ay = limA2xn = y. So, Im(A) is closed and for its elements holds that Ey = y.
When we write y ≡ Ax and z ≡ (I −A)x, then (y, z) = 0, so A is really orthogonal
projection.

�

Every projector is projection and it is positive operator.

Definition 2.14. Projector E is orthogonal to projector F , if Im(E) ⊥ Im(F ).
This is equivalent to EF = FE = 0.

Lemma 2.15. Let E,F are projectors. Then

(1) E + F is a projector, if E is orthogonal to F; Then

Im(E + F ) = Im(E)⊕ Im(F )

(2) Following is equivalent:
• E − F is a projector
• E ≥ F
• ImE ⊃ ImF
• EF = FE = F
Then Im(E − F ) is orthogonal complement of subspace ImF in ImE.

(3) Operator EF is a projector, iff EF = FE. Then Im(EF ) = Im(E)∩Im(F ).

Proof. When EF = FE = 0, then we have directly from the definition of a projector
that E+F is projector. Opposite implication: when EF+FE = 0, we will multiply
this equation by F from left and right and we obtain desired equality EF = FE = 0.
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When E − F is a projector, then ((E − F )x, x) ≥ 0 implies (Ex, x) ≥ (Fx, x).
The first inequality holds because E − F is projector and so it is positive.

From the inequality E ≥ F follows: ‖Ex‖ ≥ ‖Fx‖; But we know that ImE is the
set of elements such that Ey = y. Because ‖Ex‖ ≤ ‖x‖ for every projector, we can
characterize the set of elements y ∈ ImE like ‖Ey‖ = ‖y‖. But when ‖x‖ = ‖Fx‖,
then ‖Ex‖ ≥ ‖Fx‖ = ‖x‖. Then we have ‖x‖ = ‖Ex‖.

If ImE ⊃ ImF , then kerE ⊂ kerF , but FE = F implies F (I − E) = 0.
If EF is projector, then EFEF = FE and (EFx, x) = (x,EFx). But then also

(EFx, x) = (x, FEx) and the result follows. �


