1. Banach space

Definition 1.1. Norm is a nonnegative function ||v|| from vector space $V_{\mathbb{C}}$ (over complex numbers) to real numbers \mathbb{R} , $||.||:V_{\mathbb{C}}\to\mathbb{R}$, such that the following properties are fulfilled:

- $||a|| \ge 0$, $||a|| = 0 \Leftrightarrow a = 0$
- $\lambda \in \mathbb{C}$, $\|\lambda a\| = |\lambda| \|a\|$
- $||a+b|| \le ||a|| + ||b||$

Definition 1.2. Metric is non-negative function from $V \times V$ to \mathbb{R} , which must fulfill the following:

- $\rho(v, w) \ge 0$ and $\rho(x, y) = 0 \Leftrightarrow x = y$
- $\rho(\lambda v, \lambda w) = \lambda \rho(v, w)$, $\rho(v, w) = \rho(w, v)$
- $\rho(x,z) \le \rho(x,y) + \rho(y,z)$

Exercise 1.3. Norm is uniformly continuous function.

We have immediately that $\rho(x,y) = ||x-y||$ is a metric.

Definition 1.4. We will say that vector space X with a norm $\|.\|$, is a Banach space, when the metric space (X, ρ) with the metric ρ induced by this norm $\|.\|$ is complete.

Example 1.5. Continuous functions $f(x) \in C(K)$ on a compact space K form with the maximum norm, $\sup_{x \in K} (|f(x)| : x \in K)$, Banach space.

Example 1.6. Space of all sequences $\{x_n\}_{n\in\mathbb{N}}$, such that $\|x\|_p = (\sum_{i=1}^{\infty} |x_i|^p)^{1/p}$ is finite, form for given $p \geq 1$ Banach space.

Definition 1.7. We say that a map $(.,.): V \times V \to \mathbb{R}$ (or \mathbb{C}) is a scalar product when it fulfills:

- $(a,a) \ge 0$, and $(a,a) = 0 \Leftrightarrow a = 0$
- $(a, \lambda b) = \overline{\lambda}(a, b), (\lambda a, b) = \lambda(a, b), (a, b) = \overline{(b, a)}$
- (a, b + c) = (a, b) + (a, c)

Definition 1.8. We say that a Banach space H is a Hilbert space, when the metric space (H, ρ) is complete in the metric induced by this $||a|| = \sqrt{(a, a)}$.

Example 1.9. The space of square integrable functions $f: \mathbb{R} \to \mathbb{R}$ with a norm $\sqrt{\int_{\mathbb{R}} |f|^2 dx} < \infty$ is Hilbert space.

Example 1.10. The space of sequences x_n with the norm defined in (1.6), p = 2, is Hilbert space.

We have two basic notions of a basis in infinite dimensional Hilbert spaces. We have orthonormal basis and algebraical Hamel basis.

Definition 1.11. We say that system of vectors L creates orthonormal system, when all vectors from this system are perpendicular to each other and they have norm 1. System is a basis, when we could not add any further functions to this system.

Corollary 1.12. Every Hilbert space has an orthonormal basis.

Proof. Could be done by Zorn's lemma.

Definition 1.13. Topological space is separable, when there exists countable dense set.

Corollary 1.14. Hilbert space is separable, if and only if there exists countable orthonormal basis.

Proof. If there is uncountable orthonormal basis, then the space is not separable, because $||e_k - e_n|| = \sqrt{2}$ for the elements of the basis e_k and e_n .

2. Bounded operator

We will develop now the concept of bounded linear operators. Bounded operator maps bounded sets on bounded sets. The following lemma holds:

Lemma 2.1. The following is equivalent for linear mapping $A: X \to Y$, where X and Y are normed vector spaces:

- A is continuous
- A is continuous in 0
- A is bounded on B_X
- A is bounded

Proof. When A is continuous then is continuous in 0.

If A is continuous in 0, then for all $\epsilon > 0$ exists a $\delta > 0$ such that

$$||x|| < \delta \Rightarrow ||A(x)|| < \epsilon$$
.

There exists $\delta_0 > 0$, such that $||A(x)|| \le 1$, when $x < \delta_0$. But then for every $z \in B_m$ holds $||A(z)|| = \frac{1}{\delta_0} ||A(\delta_0 z)|| \le \frac{1}{\delta_0}$. Let $||Ax|| \le K$ for $x \in B_m$, then there is $M < \infty : ||A(x)|| \le M ||x||$ for every

Let $||Ax|| \le K$ for $x \in B_m$, then there is $M < \infty : ||A(x)|| \le M ||x||$ for every $x \in X$; Let $\epsilon > 0$, if $x, y \in X$: $||x - y|| < \frac{\epsilon}{M}$, then $||Ax - Ay|| \le M ||x - y|| < \epsilon$. Then A is also uniformly continuous.

Definition 2.2. We define the norm of linear mapping $L: X \to Y$ like $||L|| = \sup_{||x|| \le 1} \{||Lx||_Y : ||x||_X \le 1\}$

Exercise 2.3. When we consider the space of all linear mappings from normed linear space X to normed linear space Y, $\Lambda(X,Y)$, with the norm defined in (2.2), it is a Banach space when Y is a Banach space.

We say that for x and y in a Hilbert space H, $x \perp y$, when (x, y) = 0. We define similarly $x \perp A$, where A is subspace of H and $A \perp B$, where A, B are subspaces of H.

Definition 2.4. We define orthogonal complement of subspace $M \subset\subset H$ like the set of vectors $x \in M^{\perp}$, such that (x,h) = 0 for all $h \in M$.

Lemma 2.5. Let M be closed subspace of Hilbert space H. Then for every $x \in H$ exists exactly one $m_0 \in M$, $||x - m_0|| = dist(x, M)$.

Proof. Let's suppose that $x \neq 0$. Otherwise we will put $m_0 = 0$. The task is to prove existence and uniqueness of an element of the set C = x - M, such that the norm of this element, $\delta = dist(0, C) = dist(x, M)$, has minimal value. We will prove the existence: the first observation is $0 \notin C$, so $\delta > 0$; According to the definition of distance, there exists a sequence $y_n \in C$ such that $||y_n|| \to \delta$. If we prove that the sequence is Cauchy then there will exist y such that $||y|| = \lim ||y_n|| = \delta$.

Sequence $\frac{1}{2}(y_n + y_k) \in C$. Therefore we have by rectangular rule that

$$\|y_n - y_k\|^2 = 2(\|y_n\|^2 + \|y_k\|^2) - \|y_n + y_k\|^2 \le 2(\|y_n\|^2 + \|y_k\|^2) - 4\delta^2 \to 0$$

The proof of uniqueness is also straightforward: let $a \in C$ and $b \in C$ are 2 vectors, such that we obtain the minimum value dist(0,C) for both of them. Then again by rectangular rule

$$\|a - b\|^2 = 2(\|a\|^2 + \|b\|^2) - \|a + b\|^2 \le 2(\|a\|^2 + \|b\|^2) - 4\delta^2 \to 0$$

We need also some geometrical characterization.

Lemma 2.6. Let M is a subspace of Hilbert space H. Then when $x \in H$ and $m_0 \in M$, we have the following equivalence: $||x - m_0|| = dist(x, M)$ if and only if $x - m_0 \perp M$.

Proof. Let $x - m_0 \in M^{\perp}$ and $m \in M$. Then

$$||x - m||^2 = ||x - m_0||^2 + ||m - m_0||^2 \ge ||x - m_0||^2$$

So, we proved by Pythagoras theorem one implication, because $||x - m_0|| = dist(x, M)$. For the second implication:

$$(x - m_0, x - m_0) \le ||x - (m_0 + \epsilon m)|| = ||x - m_0||^2 - \epsilon(x - m_0, m) + \epsilon^2 ||m||^2$$

Because we have chosen $\epsilon > 0$ arbitrary, we have $(x - m_0, m) \le 0$. When we choose $\epsilon < 0$, we get opposite inequality. This means $(x - m_0, m) = 0$.

Definition 2.7. We say that vector space E is an algebraical sum of spaces M and N, $E = M \oplus N$, when every vector $v \in E$ could be uniquely written as $v = v_M + v_N$, where $v_M \in M$ and $v_N \in N$. We have $E = M \oplus N$ and $M \cap N = \emptyset$.

So, if $E = M \oplus N$, then we can define projections $P_M(v) = v_M$ and $P_N(v) = v_N$. When E has also topological structure, we can define the following notion:

Definition 2.8. If $W = M \oplus N$, we say that W is a topological sum of M and N, $W = M \oplus_t N$, if projections P_M and P_N are continuous.

We immediately see that P_M is continuous if P_N is continuous. If W is topological sum of subspaces M and N, then both spaces M and N are closed. Contrary, if $W = M \oplus N$ and both spaces M and N are closed, then $W = M \oplus_t N$.

Definition 2.9. We say that a continuous and linear operator P on Banach space $X, P: X \to X$ is a projection, if $P^2 = P$.

If P is a projection, then I - P is projection and $||P|| \ge 1$.

Lemma 2.10. $P: X \to X$:

- If P is a projection on Banach space X, then $\ker(P)$ and $\operatorname{Im}(P)$ are closed subspaces X and $X = \ker(P) \oplus_t \operatorname{Im}(P)$.
- If M and N are closed subspaces of X, $X = M \oplus_t N$, then exists P on X such that $M = \ker P$ and $N = \operatorname{Im} P$

Proof. ker P is always closed subspace. But because $\ker(I - P) = \operatorname{Im} P$, $\operatorname{Im} P$ is also closed subspace. We can write

$$x = Px + (I - P)x,$$

but Px is element of $\operatorname{Im} P$ and $\ker (I - P)x$ is element of $\ker P$. $\ker P \cap \operatorname{Im} P = \emptyset$ and the first result follows.

For the next statement: we can write $x = x_M + x_N$, where we define $Px = x_N$;

Now we define the notion of orthogonal projections (or projectors) in Hilbert spaces:

Definition 2.11. Let M is a closed subspace of a Hilbert space H. We define projector P like the mapping, which projects orthogonally any $v \in H$ to M, $Pv \in M$.

We see that projector P is a linear mapping and it is bounded. We see that $\operatorname{Im} P = M$ and that $\ker P = M^{\perp}$ and $\|P\| = 1$. I - P is projector on M^{\perp} .

Definition 2.12. We say that an operator A defined on Hilbert space H is Hermitian, if (Ax, y) = (x, Ay) for all $x, y \in H$.

Lemma 2.13. Operator A, defined on H is a projector, if and only if it is Hermitian and $A^2 = A$. If these conditions are fulfilled then Im(A) is a closed subspace and it is composed from such elements $x \in H$ that Ax = x.

Proof. When A is a projector, then $A^2 = A$ is from definition and it is Hermitian, because (Ax, (I - A)x) = 0. And so $(Ax, x) = ||Ax||^2 \in \mathbb{R}$.

Contrary, when it is Hermitian and $A^2 = A$. Let's take $y = \lim Ax_n$, then $Ay = \lim A^2x_n = y$. So, $\operatorname{Im}(A)$ is closed and for its elements holds that Ey = y. When we write $y \equiv Ax$ and $z \equiv (I - A)x$, then (y, z) = 0, so A is really orthogonal projection.

Every projector is projection and it is positive operator.

Definition 2.14. Projector E is orthogonal to projector F, if $\text{Im}(E) \perp \text{Im}(F)$. This is equivalent to EF = FE = 0.

Lemma 2.15. Let E, F are projectors. Then

(1) E + F is a projector, if E is orthogonal to F; Then

$$\operatorname{Im}(E+F) = \operatorname{Im}(E) \oplus \operatorname{Im}(F)$$

- (2) Following is equivalent:
 - E F is a projector
 - \bullet E > F
 - $\operatorname{Im} E \supset \operatorname{Im} F$
 - EF = FE = F

Then Im(E-F) is orthogonal complement of subspace Im F in Im E.

(3) Operator EF is a projector, iff EF = FE. Then $Im(EF) = Im(E) \cap Im(F)$.

Proof. When EF = FE = 0, then we have directly from the definition of a projector that E+F is projector. Opposite implication: when EF+FE=0, we will multiply

this equation by F from left and right and we obtain desired equality EF = FE = 0.

When E - F is a projector, then $((E - F)x, x) \ge 0$ implies $(Ex, x) \ge (Fx, x)$. The first inequality holds because E - F is projector and so it is positive.

From the inequality $E \ge F$ follows: $||Ex|| \ge ||Fx||$; But we know that Im E is the set of elements such that Ey = y. Because $||Ex|| \le ||x||$ for every projector, we can characterize the set of elements $y \in \text{Im } E$ like ||Ey|| = ||y||. But when ||x|| = ||Fx||, then $||Ex|| \ge ||Fx|| = ||x||$. Then we have ||x|| = ||Ex||.

If $\operatorname{Im} E \supset \operatorname{Im} F$, then $\ker E \subset \ker F$, but FE = F implies F(I - E) = 0.

If EF is projector, then EFEF = FE and (EFx, x) = (x, EFx). But then also (EFx, x) = (x, FEx) and the result follows.