
1. Riesz-Schaudauer theory of compact operators

We will denote the range of an operator T , T ∈ L(X), like R(T ). It is always a
subspace of space X. It is closed in the case of finite dimensional space X.

Lemma 1.1. Let be X a Banach space and T ∈ L(x). If it exists a β > 0 such,
that ‖T (x)‖ ≥ β ‖x‖ for all x ∈ X, then R(T ) is a closed set.

Proof. Let is zn ∈ R(T ), zn → z. We will find xn ∈ X such that, T (xn) = zn.
Then ‖xn − xk‖ ≤ β−1 ‖zn − zk‖ and we see that a sequence {xn} is Cauchy. Then
the limit limxn ≡ x exists and we obtain from the continuity of T that Tx = z. �

We will call a complex number an eigenvalue of an operator T ∈ L(x), when
exists x 6= 0, for which T (x) = λx. So, λ is an eigenvalue of T , when the operator
T − λI is not injective. We denote the set of all eigenvalues of T like σp(T ) and we
call it pointwise specturm of T . 1

We will say that a complex number λ ∈ C lies in spectrum of σ(T ) of operator
T , when operator T −λI is not injective , or R(T −λI) 6= X. It is clear that in the
spectrum of operator T lie all its eigenvalues.

If λ is not in spectrum of operator T , the operator T − λI is injective and his
range is whole space X. We can characterize operators with such a property also
followingly: we say that an operator T defined on Banach space X is invertible, if
exists an operator L ∈ L(X) such, that LT = TL = I.

Theorem 1.2. Operator T ∈ L(X) is invertible, iff T is injective and onto.

Proof. If T is invertible. Then there exists L ∈ L(X) such, that LT = I and
TL = I. If Tx = 0, then we get from the first equality that x = 0. So T is injective.
If we choose y ∈ X arbitrarily, we can put x = Ly and we obtain from the second
inequality that y = Tx. So T is onto.

If we have an injective operator T ∈ L(X) with the property that R(T ) = X,
then the inverse mapping (in the set-theoretic sense) is a linear operator onto X,
which is according to Banach open mapping theorem continuous. We have

T (T−1x) = T−1(Tx) = x,

for all x. �

Lemma 1.3. Let T be an invertible operator on Banach space X, α ≡
∥∥T−1∥∥. If

S ∈ L(X) and ‖S − T‖ < 1
α , then operator S is invertible.

Proof. Because∥∥∥∥∥∥
n∑
j=k

(T−1(T − S))j

∥∥∥∥∥∥ ≤
n∑
j=k

∥∥(T−1(T − S))j
∥∥ ≤ n∑

j=k

∥∥(T−1(T − S))
∥∥j ≤ n∑

j=k

qj

,
for all k < n, where q ≡ α ‖S − T‖ < 1, then is the sequence of partial sums of

serie
∑∞
j=0(T−1(T − S))j Cauchy in L(X) (this serie is absolutely convergent). So

we can put

1Contrary to the situation of finite dimensional spaces, there exists operators which are injective
but not surjective and which are surjective but not injective.
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L ≡
∞∑
j=0

(T−1(T − S))j)T−1.

Because S = T (I−T−1(T−S)), we obtain by calculation that LS = SL = I. �

This lemma tells us the the set of invertible operators on Banach space X is open
in L(X).

Theorem 1.4. Let X is a Banach space and T ∈ L(X). Then the spectrum σ(T )
is a compact subset of complex plane C. We even have σ(T ) ⊂ {λ ∈ C, |λ| ≤ ‖T‖}.

Proof. Let’s choose λ ∈ C, , |λ| > ‖T‖. Operator A ≡ −λI is invertible. If we put

S ≡ T − λI, then ‖S −A‖ = ‖T‖ < |λ| =
∥∥T−1∥∥−1. Then S − λI is invertible, in

other words λ 6= σ(T ). �

Now we will prove Riesz lemma:

Lemma 1.5. Let be X a normed linear space and Y ⊂⊂ X its closed subspace.
Then for every ε > 0 exists xε ∈ X such, that

‖xε‖ = 1, dist(xε, Y ) ≥ 1− ε.

Proof. Let’s suppose that 0 < ε < 1 and x ∈ X \ Y . Because d ≡ dist(x, Y ) > 0,

there exists x′ ∈ Y for which ‖x− x′‖ ≤ d
1−ε . If we put xε = x−x′

‖x−x′‖ , then ‖xε‖ = 1

and

(1) ‖z − xε‖ =
1

‖x− x′‖
‖(‖x− x′‖)z + x′)− x‖ ≥ dist(x, Y )

‖x− x′‖
≥ 1− ε.

�

The following theorem is called Riesz theorem:

Theorem 1.6. Let be X a normed linear space. The following is equivalent:

• X is finite dimensional
• closed unit sphere {x ∈ X : ‖x‖ ≤ 1} is compact
• identical mapping in X is compact

Proof. We need to prove only that if identical mapping in X is compact, then X
is finite dimensional: so, let’s suppose that dim X is infinity; Then exist subspaces
X1 ⊂ X2 ⊂ ... ⊂ X, such that dim Xn = n. We will find according to the previous
Riesz lemma, that there exists a sequence {xn}, such that

‖xn‖ = 1, xn+1 ∈ Xn+1, dist(xn+1, Xn) ≥ 1

2
.

From this follows that ‖xn − xm‖ ≥ 1
2 for m 6= n, but then an identical mapping

could not be compact. �

For Ker(T ) holds always that it is closed, but R(T ) hasn’t to be closed.

Lemma 1.7. Let be K a compact operator on normed linear space X. Then
Ker(I −K) is a closed finite dimensional subspace of X

Proof. We will denote B ≡ {x ∈ Ker(I −K) : ‖x‖ ≤ 1}. Because Ker(I −K) =
{x ∈ X : Kx = x}, it is KB = B and therefore B must be relatively compact.
Ker(I −K) is according to the Riesz theorem finite dimensional. �
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Lemma 1.8. If K is a compact operator on infinite-dimensional normed linear
space X, then 0 ∈ σ(K).

Proof. If the σ(K) does not contain 0, K is an invertible operator. But then
I = K ◦K−1 and so I is a compact operator. And this would be a contradiction
with Riesz theorem. �

Lemma 1.9. Let be K a compact operator on Banach space X. Then R(I −K)
is a closed subspace of X.

Proof. Let T = I −K and Z = Ker(I −K). Then Z is a closed finite dimensional
subspace of X. It has a topological complement according to one of the previous
lemmas. Let’s denote it W . Because W is closed, it is a Banach space. Then if we
will prove that T is bounded from below, we are done according to Lemma 1.1.

So, suppose that T is not bounded from below. Then there exists a sequence
xn such that ‖xn‖ = 1 and Txn → 0. Because K is compact, we can suppose
that Kxn → y. Then limxn = lim(T (xn) + K(xn)) = y. Then y = 0, but this is
impossible. �

We define annihilators folowingly: let be X a normed linear space, M ⊂⊂ X
and N ⊂⊂ X∗. We define the annihilators by the prescription

M⊥ ≡ {ϕ ∈ X∗ : ϕ(x) = 0,∀x ∈M},
⊥N ≡ {x ∈ X : ϕ(x) = 0,∀ϕ ∈ N}.

Theorem 1.10. Let be X and Y normed linear spaces and T ∈ L(X,Y ). We have

Ker(T ′) = R(T )⊥, Ker(T ) =⊥ R(T ′).

Proof. a ∈ Ker(T ′), iff T ′(a)(x) = a(Tx) = 0 for all x ∈ X. So, a ∈ R(T )⊥.
x ∈ Ker(T ), if Tx = 0. But Tx = 0, iff ϕ(Tx) = T ′(ϕ)(x) = 0 for all ϕ ∈ X∗.

This means x ∈⊥ R(T ′).
�

Theorem 1.11. Let be X and Y normed linear spaces and T ∈ L(X,Y ). Then

RT =⊥ Ker(T ′).

Proof. Let y ∈ R(T ) and ϕ ∈ Ker(T ′). So, then there exists x ∈ X such that
Tx = y. But then ϕ(y) = ϕ(Tx) = T ′(ϕ)(x) = 0. But the annihilator is always
closed, so we have one inclusion RT ⊂⊥ Ker(T ′).

We will prove the second inclusion. Let y /∈ R(T ). There exists according to

Hahn-Banach theorem ϕ ∈ Y ∗, such that ϕ(y) 6= 0 and ϕ(R(T ) = 0 . If x ∈ X,
then ϕ(T (x)) = 0, so T ′(ϕ(x)) = 0 and ϕ ∈ Ker(T ′). But because ϕ(y) 6= 0, we

have y /∈⊥ Ker(T ′). �

Very important are the following Fredholm alternatives:

Theorem 1.12. Let be K a compact operator on Banach space X and λ 6= 0. Then
the operator K − λI is injective, iff it is surjective.

Theorem 1.13. Let be K a compact operator and λ 6= 0. Then

R(K ′ − λI ′) = Ker(K − λI)⊥, R(K − λI) =⊥ (K ′ − λI ′).
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Theorem 1.14. If it is K a compact operator on Banach space X and λ 6= 0.
Then is

dim Ker(K − λI) = dim Ker(K ′ − λI ′) < 0.
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[3] J.Blank, P.Exner, M.Havĺıček, Hilbert Space Operators in Quantum Physics, Springer Nether-

lands, 2008
[4] M.Reed, B.Simon, Methods of modern mathematical physics, Vol I,II,III,IV, Academic Press

[5] R.V. Kadison, J.R.Ringrose, Fundamentals of the theory of operator algebras, Vol I,II, Aca-

demic Press, 1983 and 1986
[6] K.Rejzner, Perturbative Algebraic Quantum Field Theory, Springer, 2016

[7] R.Brunetti, C.Dappiaggi, K.Frendenhagen, J.Yngvason, Advances in Algebraic Quantum Filed

Theory, Springer, 2015
[8] R.Haag, Local Quantum Physics, Springer, 1992/1996


