1. RIESZ-SCHAUDAUER THEORY OF COMPACT OPERATORS

We will denote the range of an operator $T, T \in L(X)$, like R(T). It is always a subspace of space X. It is closed in the case of finite dimensional space X.

Lemma 1.1. Let be X a Banach space and $T \in L(x)$. If it exists a $\beta > 0$ such, that $||T(x)|| \ge \beta ||x||$ for all $x \in X$, then R(T) is a closed set.

Proof. Let is $z_n \in R(T)$, $z_n \to z$. We will find $x_n \in X$ such that, $T(x_n) = z_n$. Then $||x_n - x_k|| \leq \beta^{-1} ||z_n - z_k||$ and we see that a sequence $\{x_n\}$ is Cauchy. Then the limit $\lim x_n \equiv x$ exists and we obtain from the continuity of T that Tx = z. \Box

We will call a complex number an eigenvalue of an operator $T \in L(x)$, when exists $x \neq 0$, for which $T(x) = \lambda x$. So, λ is an eigenvalue of T, when the operator $T - \lambda I$ is not injective. We denote the set of all eigenvalues of T like $\sigma_p(T)$ and we call it pointwise spectrum of T.¹

We will say that a complex number $\lambda \in \mathbb{C}$ lies in spectrum of $\sigma(T)$ of operator T, when operator $T - \lambda I$ is not injective, or $R(T - \lambda I) \neq X$. It is clear that in the spectrum of operator T lie all its eigenvalues.

If λ is not in spectrum of operator T, the operator $T - \lambda I$ is injective and his range is whole space X. We can characterize operators with such a property also followingly: we say that an operator T defined on Banach space X is invertible, if exists an operator $L \in L(X)$ such, that LT = TL = I.

Theorem 1.2. Operator $T \in L(X)$ is invertible, iff T is injective and onto.

Proof. If T is invertible. Then there exists $L \in L(X)$ such, that LT = I and TL = I. If Tx = 0, then we get from the first equality that x = 0. So T is injective. If we choose $y \in X$ arbitrarily, we can put x = Ly and we obtain from the second inequality that y = Tx. So T is onto.

If we have an injective operator $T \in L(X)$ with the property that R(T) = X, then the inverse mapping (in the set-theoretic sense) is a linear operator onto X, which is according to Banach open mapping theorem continuous. We have

$$T(T^{-1}x) = T^{-1}(Tx) = x,$$

Lemma 1.3. Let T be an invertible operator on Banach space X, $\alpha \equiv ||T^{-1}||$. If $S \in L(X)$ and $||S - T|| < \frac{1}{\alpha}$, then operator S is invertible.

Proof. Because

for all x.

$$\left\|\sum_{j=k}^{n} (T^{-1}(T-S))^{j}\right\| \le \sum_{j=k}^{n} \left\| (T^{-1}(T-S))^{j} \right\| \le \sum_{j=k}^{n} \left\| (T^{-1}(T-S)) \right\|^{j} \le \sum_{j=k}^{n} q^{j}$$

for all k < n, where $q \equiv \alpha ||S - T|| < 1$, then is the sequence of partial sums of serie $\sum_{j=0}^{\infty} (T^{-1}(T-S))^j$ Cauchy in L(X) (this serie is absolutely convergent). So we can put

¹Contrary to the situation of finite dimensional spaces, there exists operators which are injective but not surjective and which are surjective but not injective.

$$L \equiv \sum_{j=0}^{\infty} (T^{-1}(T-S))^j) T^{-1}.$$

Because $S = T(I - T^{-1}(T - S))$, we obtain by calculation that LS = SL = I. \Box

This lemma tells us the set of invertible operators on Banach space X is open in L(X).

Theorem 1.4. Let X is a Banach space and $T \in L(X)$. Then the spectrum $\sigma(T)$ is a compact subset of complex plane \mathbb{C} . We even have $\sigma(T) \subset \{\lambda \in \mathbb{C}, |\lambda| \leq ||T||\}$.

Proof. Let's choose $\lambda \in \mathbb{C}$, $|\lambda| > ||T||$. Operator $A \equiv -\lambda I$ is invertible. If we put $S \equiv T - \lambda I$, then $||S - A|| = ||T|| < |\lambda| = ||T^{-1}||^{-1}$. Then $S - \lambda I$ is invertible, in other words $\lambda \neq \sigma(T)$.

Now we will prove Riesz lemma:

Lemma 1.5. Let be X a normed linear space and $Y \subset X$ its closed subspace. Then for every $\epsilon > 0$ exists $x_{\epsilon} \in X$ such, that

$$||x_{\epsilon}|| = 1, \ dist(x_{\epsilon}, Y) \ge 1 - \epsilon.$$

Proof. Let's suppose that $0 < \epsilon < 1$ and $x \in X \setminus Y$. Because $d \equiv dist(x, Y) > 0$, there exists $x' \in Y$ for which $||x - x'|| \leq \frac{d}{1-\epsilon}$. If we put $x_{\epsilon} = \frac{x-x'}{||x-x'||}$, then $||x_{\epsilon}|| = 1$ and

(1)
$$||z - x_{\epsilon}|| = \frac{1}{||x - x'||} ||(||x - x'||)z + x') - x|| \ge \frac{dist(x, Y)}{||x - x'||} \ge 1 - \epsilon.$$

The following theorem is called Riesz theorem:

Theorem 1.6. Let be X a normed linear space. The following is equivalent:

- X is finite dimensional
- closed unit sphere $\{x \in X : ||x|| \le 1\}$ is compact
- *identical mapping in X is compact*

Proof. We need to prove only that if identical mapping in X is compact, then X is finite dimensional: so, let's suppose that $\dim X$ is infinity; Then exist subspaces $X_1 \subset X_2 \subset ... \subset X$, such that $\dim X_n = n$. We will find according to the previous Riesz lemma, that there exists a sequence $\{x_n\}$, such that

$$||x_n|| = 1, \ x_{n+1} \in X_{n+1}, \ dist(x_{n+1}, X_n) \ge \frac{1}{2}$$

From this follows that $||x_n - x_m|| \ge \frac{1}{2}$ for $m \ne n$, but then an identical mapping could not be compact.

For Ker(T) holds always that it is closed, but R(T) hasn't to be closed.

Lemma 1.7. Let be K a compact operator on normed linear space X. Then Ker(I - K) is a closed finite dimensional subspace of X

Proof. We will denote $B \equiv \{x \in Ker(I - K) : ||x|| \le 1\}$. Because $Ker(I - K) = \{x \in X : Kx = x\}$, it is KB = B and therefore B must be relatively compact. Ker(I - K) is according to the Riesz theorem finite dimensional. \Box

Lemma 1.8. If K is a compact operator on infinite-dimensional normed linear space X, then $0 \in \sigma(K)$.

Proof. If the $\sigma(K)$ does not contain 0, K is an invertible operator. But then $I = K \circ K^{-1}$ and so I is a compact operator. And this would be a contradiction with Riesz theorem.

Lemma 1.9. Let be K a compact operator on Banach space X. Then R(I - K) is a closed subspace of X.

Proof. Let T = I - K and Z = Ker(I - K). Then Z is a closed finite dimensional subspace of X. It has a topological complement according to one of the previous lemmas. Let's denote it W. Because W is closed, it is a Banach space. Then if we will prove that T is bounded from below, we are done according to Lemma 1.1.

So, suppose that T is not bounded from below. Then there exists a sequence x_n such that $||x_n|| = 1$ and $Tx_n \to 0$. Because K is compact, we can suppose that $Kx_n \to y$. Then $\lim x_n = \lim(T(x_n) + K(x_n)) = y$. Then y = 0, but this is impossible.

We define annihilators followingly: let be X a normed linear space, $M \subset X$ and $N \subset X^*$. We define the annihilators by the prescription

$$M^{\perp} \equiv \{ \varphi \in X^* : \varphi(x) = 0, \forall x \in M \},\$$

$$^{\perp}N \equiv \{ x \in X : \varphi(x) = 0, \forall \varphi \in N \}.$$

Theorem 1.10. Let be X and Y normed linear spaces and $T \in L(X, Y)$. We have

$$Ker(T') = R(T)^{\perp}, \quad Ker(T) =^{\perp} R(T').$$

Proof. $a \in Ker(T')$, iff T'(a)(x) = a(Tx) = 0 for all $x \in X$. So, $a \in R(T)^{\perp}$.

 $x \in Ker(T)$, if Tx = 0. But Tx = 0, iff $\varphi(Tx) = T'(\varphi)(x) = 0$ for all $\varphi \in X^*$. This means $x \in \mathcal{L} R(T')$.

Theorem 1.11. Let be X and Y normed linear spaces and $T \in L(X,Y)$. Then

$$\overline{RT} =^{\perp} Ker(T').$$

Proof. Let $y \in R(T)$ and $\varphi \in Ker(T')$. So, then there exists $x \in X$ such that Tx = y. But then $\varphi(y) = \varphi(Tx) = T'(\varphi)(x) = 0$. But the annihilator is always closed, so we have one inclusion $\overline{RT} \subset^{\perp} Ker(T')$.

We will prove the second inclusion. Let $y \notin \overline{R(T)}$. There exists according to Hahn-Banach theorem $\varphi \in Y^*$, such that $\varphi(y) \neq 0$ and $\varphi(\overline{R(T)} = 0$. If $x \in X$, then $\varphi(T(x)) = 0$, so $T'(\varphi(x)) = 0$ and $\varphi \in Ker(T')$. But because $\varphi(y) \neq 0$, we have $y \notin^{\perp} Ker(T')$.

Very important are the following Fredholm alternatives:

Theorem 1.12. Let be K a compact operator on Banach space X and $\lambda \neq 0$. Then the operator $K - \lambda I$ is injective, iff it is surjective.

Theorem 1.13. Let be K a compact operator and $\lambda \neq 0$. Then

$$R(K' - \lambda I') = Ker(K - \lambda I)^{\perp}, \quad R(K - \lambda I) = {}^{\perp} (K' - \lambda I').$$

Theorem 1.14. If it is K a compact operator on Banach space X and $\lambda \neq 0$. Then is

$$\dim Ker(K - \lambda I) = \dim Ker(K' - \lambda I') < 0.$$

References

- [1] W.Rudin, Functional analysis, McGraw-Hill Book, 1991
- [2] J.Lukeš, Zápisky z funcionální analýzy, Karolinum, 2002
- [3] J.Blank, P.Exner, M.Havlíček, Hilbert Space Operators in Quantum Physics, Springer Netherlands, 2008
- [4] M.Reed, B.Simon, Methods of modern mathematical physics, Vol I,II,III,IV, Academic Press
- [5] R.V. Kadison, J.R.Ringrose, Fundamentals of the theory of operator algebras, Vol I,II, Academic Press, 1983 and 1986
- [6] K.Rejzner, Perturbative Algebraic Quantum Field Theory, Springer, 2016
- [7] R.Brunetti, C.Dappiaggi, K.Frendenhagen, J.Yngvason, Advances in Algebraic Quantum Filed Theory, Springer, 2015
- [8] R.Haag, Local Quantum Physics, Springer, 1992/1996