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Mechanical approach
Coupled scalar fields: the mechanical approach and the
late cosmic acceleration
Galileon fields in the mechanical approach in the late
Universe



Mechanical approach

hydrodynamical approach is in strongly nonlinear regime
inapplicable
then N-body simmulation is commonly used
it is important to define theoretically at which scales we
should perform transition from the highly inhomogeneous
mechanical distribution to the smooth hydrodynamical one



When we consider the cell of uniformity (150-370 Mpc). There
are discrete distributed inhomogeneities.



discrete structures, which perturb the background
Friedmann model
gravitational potentials for an arbitrary number of randomly
distributed inhomogeneities within the ΛCDM
equations from the first principles, we can generalize our
analysis on various alternative cosmological models and
we can check their compatibility with observations
goal of the mechanical approach is to select viable models
(ΛCDM, f (R)-theories, Chaplygin gas, quintessence
models, Chevalier-Polarski-Linder)



Scalar perturbations of FLRW Universe

We consider the stage of the Universe evolution, which is much
latter than the recombination time. At this stage, the formation
of inhomogeneities has been generally completed. The cell of
statistical homogeneity/uniformity size is of the order of 150

Mpc.



On much bigger scales the Universe is well described by the
ΛCDM model with matter mainly in the form of dark matter

plus the cosmological constant.

Here, dark matter is well simulated by a pressurless perfect
fluid and the hydrodynamical approach provides the adequate
description of the model.



ΛCDM background model and mechanical approach

We start with the energy-momentum tensor of non-interacting
randomly distributed particles (inhomogenities, in our case):

T ik =
∑

p

mpc2

(−g)1/2[η]

dx i

ds
dxk

ds
ds
dη
δ(~r −~rp) =

∑
p

mpc2

(−g)1/2[η]

dx i

dη
dxk

dη
dη
ds
δ(~r −~rp),

where mp is the mass of the p-th inhomogeneity and [t ] and [η]
indicate that the determinant is calculated from the metric
coefficients defined with respect to synchronous t or conformal
η times.



In the ΛCDM model, the main contributions come from the
cosmological constant and the nonrelativistic matter. Therefore,
the peculiar velocities should be much less than the speed of
light :

dxα

dη
= a

dxα

dt
1
c
<< 1



Therefore, we can assume that T 00 is the only non-zero
component of the energy-momentum tensor:

T 00 =
∑

p

mpc2
√
−g00g

δ(~r −~rp) =

√
γρc2

√
−g00g

,

where γ is the determinant of the metrics γαβ and we introduce
the rest mass density

ρ =
1
√
γ

∑
p

mpδ(~r −~rp).



After averaging T 00 over all space, we get T̄ 00 = ρ̄c2/a5, where
ρ̄ is the average rest mass density ρ and we use the

unperturbed metrics. Therefore T̄ 0
0 = ρ̄c2/a3.

The inhomogeneities in the Universe result in scalar
perturbations of the metrics. In the conformal Newtonian

gauge, such perturbed metrics is

ds2 ≈ a2[(1 + 2Φ)dη2 − (1− 2Ψ)γαβdxαdxβ],

where scalar perturbations depend on all space-time
coordinates η, x , y , z and satisfy equations ...



∆Ψ− 3H(Ψ′ + HΦ) + 3K Ψ =
1
2
κa2δT 0

0

∂

∂xβ
(Ψ′ + HΦ) =

1
2
κa2δT 0

β = 0

[Ψ′′ + H(2Ψ + Φ)′ + (2H ′ + H2)Φ +
1
2

∆(Φ−Ψ)− K Ψ]δαβ

−1
2
γασ(Φ−Ψ);σ;β = −1

2
κa2δTα

β = 0



The condition δT 0
β = 0 follows from the nonrelativistic nature

of the considered matter, |δT 0
β | << δT 0

0 , and we can drop
δT 0

β with respect to δT 0
0 . To clarify this point, we want to stress

that according to previous equations, both δT 0
0 and δT 0

β

contribute to the gravitational potential Φ. However, due to the
previous condition, peculiar velocities of inhomogenities are

nonrelativistic and the contribution of δT 0
β is negligible

compared to that of δT 0
0 . In other words, account of δT 0

β is
beyond accuracy of the model.



Following the standard argumentation, we can put Φ = Ψ, then
the system of above equations reads

∆Φ− 3H(Φ′ + HΦ) + 3K Φ =
1
2
κa2δT 0

0,

∂

∂xβ
(Φ′ + HΦ) = 0,

Φ′′ + 3HΦ′ + (2H ′ + H2)Φ− K Φ = 0.

So, from the second equation we get

Φ(η,~r) =
ϕ(~r)

c2a(η)
,

where ϕ(~r) is a function of all spatial coordinates and we have
introduced c2 for convenience.



We shall see that ϕ(~r) ∼ 1
r in the vicinity of an inhomogeneity,

and the non-relativistic gravitational potential Φ(η,~r) ∼ 1
ar = 1

R ,
where R = ar is the physical distance. Φ has the correct

Newtonian limit near inhomogeneities. We get

∆ϕ+ 3Kϕ =
1
2
κc2a3δT 0

0.

Our final master equation is

∆ϕ+ 3Kϕ = 4πGN(ρ− ρ̄).

ρ and ρ̄ are comoving local and average rest mass
densities, which do not depend on time.
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Scalar fields

We want to gain a model for the accelerated expansion of the
Universe!

ΛCDM, w = −1

Very popular are now models using scalar fields:
−1 < w < 0, quintessence
w < −1, phantom
w = −1 crossing, quintom

Theory of cosmological perturbations is a powerful tool to
investigate cosmological models.



the mechanical approach works perfectly for the ΛCDM
model where the peculiar velocities of the
inhomogeneities can be considered as negligibly small
we consider the scales deep inside the cell of uniformity
we drop the peculiar velocities at the first order
approximation
such an approach was generalized also to the case of
cosmological models with different perfect fluids, which can
play a role of dark energy and matter



fluctuations of the additional perfect fluids also form
their own inhomogeneities
in the mechanical approach it is supposed that the
velocities of displacement of such inhomogeneities is of
the order of the peculiar velocities of inhomogeneities of
dust like matter, they are nonrelativistic; in some sense
these type of inhomogeneities are coupled to each other



They can play an important role of dark matter and can be
distributed around the baryonic inhomogeneities in such way
that it can solve the problem of flatness of rotation curves.



cosmological model with a scalar field minimally coupled to
gravity
the universe is also filled with dust-like matter (in the form
of discrete galaxies and group of galaxies) and radiation
we study the theory of scalar perturbations for such a
model and obtain a condition under which the
inhomogeneities of dust like matter and the
inhomogeneities of the scalar field can be coupled to each
other
first, the coupled scalar field behaves as a 2-component
perfect fluid: a cosmological constant and a network of
frustrated cosmic strings



the potential of such scalar field is very flat at the present
time
this flatness condition is natural consequence of the
current acceleration of the universe, as the contribution of
the term with w = −1

3 has to be very small at present
the fluctuations of the scalar field are absent and the
energy density and pressure of the scalar field fluctutate
due to the interaction of the gravitational potential with the
scalar field background



such a coupled scalar field is in concordance with the
theory of scalar perturbations and contributes to the
gravitational potential
the fluctuations of the energy density of the scalar field are
concentrated around the galaxies, screening their
gravitational potential
such a distribution of the energy density of the scalar field
fluctuations justifies the coupling conditions



FLRW: homogeneous and isotropic

ds2 = a2(η)(dη2 − γαβdxαdxβ)

Scalar field minimally coupled to gravity:

Sφ =

∫ √
−g(

1
2

gµν∂µφ∂νφ− V (φ))

Background energy density and pressure:

T̄ 0
0 ≡ ε̄ϕ =

1
2a2 (φ′c)2 + V (φc)

−T̄ i
i ≡ p̄ϕ =

1
2a2 (φ′c)2 − V (φc)

As matter sources, we also include dust-like matter and
radiation.



H2 =
κa2

3
[ε̄DUST + ε̄RAD +

1
2

(φ′c)2

a2 + V (φc)]− K ,

H ′ =
1
3

a2κ[−ε̄RAD −
1
2
ε̄DUST −

(φ′c)2

a2 + V (φc)],

κ =
8πGN

c4 .



ds2 = a2(η)[(1 + 2Φ)dη2 − (1− 2Ψ)γαβdxαdxβ],

δT 0
0 ≡ δεϕ = − 1

a2 (φ′c)2Φ +
1
a2φ

′
cϕ
′ +

dV
dφ

(ϕc)ϕ,

δT 0
i =

1
a2φ

′
c∂iϕ,

δT i
j ≡ −δi

j δpϕ,

δpϕ = − 1
a2 (φ′c)2Φ +

1
a2φ

′
cϕ
′ − dV

dφ
(φc)ϕ,

φ = φc + ϕ.



∆Φ− 3H(Φ′ + HΦ) + 3K Φ =
κ

2
a2(δεdust + δεrad )

−κ/2[(φ′c)2Φ− φ′cϕ′ − a2 dV
dφ

(φc)ϕ],

∂iΦ
′ + H∂iΦ =

κ

2
φ′c∂iϕ,

2
a2 [Φ′′ + 3HΦ′ + Φ(2

a′′

a
− H2 − K )] =

= κ[δprad −
1
a2 (φ′c)2Φ +

1
a2φ

′
cϕ
′ − dV

dφ
(φc)ϕ].



according to the mechanical approach, we drop the
terms containing the peculiar velocities of the
inhomogeneities and radiation as these are negligible
when compared with their respective energy density and
pressure fluctuations
such comparison with respect to the scalar field is not
evident since the quantity treated as the peculiar velocity of
the scalar field is proportional to the scalar field
perturbation



first we preserve the scalar field perturbation; then the
subsequent analysis of the equations must show whether
or not we can equate to zero the RHS of the equation

∂iΦ
′ + H∂iΦ =

κ

2
φ′c∂iϕ

we shall demonstrate that for the coupled scalar field the
RHS of this equation can indeed be set to zero in a
consistent way within the mechanical approach as it
usually happens for coupled fluids



Φ′ + HΦ =
κ

2
φ′cϕ

Φ[H ′ − H2 − K + κ
1
2

(φ′c)2] = ϕ[−κ
2
φ′′c − Hκφ′c −

a2

2
κ

dV
dφ

(φc)]+

+κ
a2

2
δprad ,

where we have also used the relation 2a′′

a = 2(H ′ + H2).



Φ[−2
3

a2κε̄rad −
1
2

a2κε̄dust ] = κ
a2

2
δprad

δprad = −Φε̄dust = −Φ
ρ̄c2

a3 =
1
3
δεrad



δεdust =
δρc2

a3 + 3
ρ̄Φ

a3

δρ = ρ− ρ̄

∆Φ− 3H(Φ′ + HΦ) + 3K Φ =

κ

2
δρc2

a
− κ

2
[(φ′c)2Φ− φ′cϕ′ − a2 dV

dφ
(φc)ϕ]

We get

ϕ =
Φ′ + HΦ

κ
2φ
′
c

,

ϕ′ =
Φ′′ + H ′Φ + HΦ′

κ
2φ
′
c

− Φ′ + HΦ
κ
2 (φ′c)2 φ′′c .



∆Φ = −κ
2

∆ρc2

a
= Φ[3H2 − 3K − κ

2
(φ′c)2 + H ′ − H

φ′′c
φ′c

+

+a2 dV
dφ

(φc)
H
φ′c

] + Φ′[4H − φ′′c
φ′c

+ a2 dV
dφ

(φc)
1
φ′c

] + Φ′′.

Since

Φ′ =
dΦ

da
aH, Φ′′ =

d2Φ

da2 a2H2 +
dΦ

da
aH ′ +

dΦ

da
aH2.

After the substitution of Φ = Ω/a, where Ω is a function of a and
the spatial coordinates, we get

∆Ω

a
− κ

2
δρc2

a
= −Ω

a
[3K +

κ

2
(φ′c)2]+

+
dΩ

da
[3H2 + H ′ − H

φ′′c
φ′c

+ a2 dV
dφ

(φc)
H
φ′c

] +
d2Ω

da2 aH2.



Dust like matter is considered in the form of discrete distributed
inhomogeneities. Then we are looking for solutions which have

Newtonian limit near gravitating masses

Ω = Ω(~r)

in agreenment with the transition to the astrophysical approach

a→ const .⇒ H → 0

and all background energy densities are equal to zero, and we
should select the flat topology K = 0.



If the dust like matter is described by the discrete gravitational
sources with masses mi and the rest mass density

ρ =
∑

i

miδ(~r −~ri),

the gravitational potential Φ is

Φ = −GN

c2
1
a

∑
i

mi

|~r −~ri |
= −GN

c2

∑
i

mi

|~R − ~Ri |
,

as it should be.
In the previous equation we took into account the realations
between the physical and comoving radius vectors: ~R = a~r ;

This equation also demonstrates that Φ ∼ 1
a .



Now, we analyse the case Ω = Ω(~r)⇒ Φ ∼ 1
a and

(φ′c)2 = const . in more details. Let us denote φ′c = β = const ..
Then we get

φc = βη + γ, γ = const .

The substitution of this equation into eqution of motion gives:

2
a′

a
β + a2 dV

dφ
φc = 2

a′

a
β + a2 V ′

β
= 0

⇒ V =
β2

a2 + V∞, V∞ = const .



ε̄ϕ =
3
2
β2

a2 + V∞

p̄ϕ = −1
2
β2

a2 − V∞

Φ ∼ 1
a
, Φ′ + HΦ = 0⇒ ϕ = ϕ′ = 0

The physical reason for this is that the "coupling" between the
inhomogeneities of the dust like matter and of the scalar field

imposes strong restriction on the scalar field!
The above analysis demonstrates that such a scalar field can

exist.



On the other hand, the fluctuations of the energy density and
pressure of the scalar field are non-zero:

δεϕ = δpϕ = − 1
a2 (φ′c)2Φ = −β

2

a3 Ω(~r) 6= 0

These fluctuations arise due to the interaction between the
scalar field background and the gravitational potential.

Previous equation shows that

δεϕ ∼
1
a3

in analogy also with the fluctuations of the energy density for a
perfect fluid with the constant equation of state parameter

w = −1
3 .



We can prove that the fluctuations of the energy density of
the scalar field contribute to the gravitational potential.
The fluctuations of the density of the scalar field are
concentrated around the inhomogeneities of the dust like
matter (around the galaxies) which is in the full
agreenment with the coupling condition. The presence of
these fluctuations leads to the screening of the
gravitational potential.



K-essence fields

Sp =

∫ √
|g|Lp =

∫ √
|g|P(X , φ),

X =
1
2

gµν∂µφ∂νφ,

1√
|g|
∂µ(

√
|g|gµνPX∂νφ)− Pφ = 0



Galileon

Mostly inspired by DGP models, people derived the five
Lagrangians that lead to field equations invariant under the

Galileon symmetry ∂µφ→ ∂µφ+ bµ in the Minkowski
spacetime:

L1 = M3φ, L2 = (∇φ)2, L3 = (�φ)(∇φ)2/M3,

L4 = (∇φ)2[2(∇φ)2 − 2φ;µνφ
;µν − R(∇φ)2/2]/M6,

L5 = (∇φ)2[(∇φ)3 − 3(�φ)φ;µνφ
;µν + 2φ ν

;µφ
ρ

;νφ
µ

;ρ

−6φ;µφ
;µνφ;ρGνρ]/M9,

The scalar field that repsects the Galileon symmetry is the
Galileon.



The result for coupled Galileon field

At the background level, such Galileon field behaves as a
3-component perfect fluid: a network of cosmic strings with
the EoS parameter w = −1

3 , cosmological constant and
some matter component.



Action

SI = α

∫
M

√
|g|�φ ∂µφ∂µφ d4x ,

α is a small parameter, which measure the deviation from the
model of minimally coupled scalar field and his units L3 (L is

a length). First we will compute the tensor of energy
momentum for this Lagrangian by the following formula:

Tµν =
2√
−g

δS
δgµν



gµν will be the following matrix:
1−2Φ

a2 0 0 0
0 −γ11 1+2Ψ

a2 −γ12 1+2Ψ
a2 −γ13 1+2Ψ

a2

0 −γ21 1+2Ψ
a2 −γ22 1+2Ψ

a2 −γ23 1+2Ψ
a2

0 −γ31 1+2Ψ
a2 −γ32 1+2Ψ

a2 −γ33 1+2Ψ
a2


We use the case K = 0 and so γ ij = γij is equal to1 0 0

0 1 0
0 0 1


and the trace γ = γ ijγij .



D’Alembertian

We compute �φ with the perturbed quantities. We use the
notation φ = φc + ϕ.

�φ =
φ′′c
a2 −

2
a2φ

′′
cΦ +

ϕ′′

a2 −
∆ijϕ

a2

− γ

a2φ
′
c(

a′

a
−Ψ′ − 2Φ

a′

a
)− a′

a
γ

a2ϕ
′ − a′φ′c

a3 −
ϕ′a′

a3 +

+
4Φφ′ca′

a3 − φ′c
a3 (Φ′a + 2a′Φ)−�ijϕ

1
a2



Complete action

Now we wrote the tensor of energy-momentum for whole
action, when we include also the minimally coupled scalar field:

S =

∫
M

√
|g|(1

2
∂ρφ∂

ρφ− V (φ) + α�φ∂µφ∂
µφ) d4x ,

where α is a small parameter, which measure the deviation
from the model of minimally coupled scalar field and it has units

L3 (L is length).



Einstein equations

So, the first Einstein equation is the following

∆Φ− 3H(Φ′ + HΦ) + 3K Φ =
κ

2
a2(δεdust + δεrad )+

+
κ

2
[−(φ′c)2Φ + φ′cϕ

′ + a2 dV
dφ

(φc)ϕ+

2αγ
(φ′c)2

a2 (φ′cΨ′ + 4Φ
a′

a
φ′c − 3ϕ′

a′

a
)−

−α2
(φ′c)2

a2 �ijϕ]



EoM

We use now the equation of motion

−2α(�φ)2 + 2α∇µ∇νφ∇µ∇νφ+ 2α∇µφ∇νφRµν−

�φ− dV
dφ

= 0



Peculiar velocity of the scalar field

When we consider the mechanical approach, we can drop the
terms containing the peculiar velocities of the

inhomogeneities and radiation as these are negligible when
compared with their respective energy density and pressure
fluctuations. If we deal with scalar field, such an approach is

not evident since the quantity treated as the peculiar velocity of
the scalar field is proportional to the scalar field perturbation ϕ.



Work with Einstein equations

δεrad

3
=
−1
3a6 [(36αHφ′cφ

′′
c + 18αH2(φ′c)2a2 + 18αH ′(φ′c)2a2+

+12αφ′′caφ′ca′ + 18α(φ′c)2a′′a−
−18α(φ′c)2(a′)2)ϕ− 30αΦ(φ′c)3a′a− 6αΦ(φ′c)2φ′′ca2+

(36α(φ′c)2a′a)ϕ′ + 3Φa6ε̄dust + 4Φa6ε̄rad ]

As matter sources, we also include dust-like matter (baryonic
and CDM) and radiation. The background (average) energy
density of the dust-like matter takes the form ε̄dust = ρ̄c2/a3,
where ρ̄ = const is the average comoving rest mass density.
For radiation we have the EoS p̄rad = 1

3 ε̄rad and εrad ∼ 1/a4.



Pure scalar field

Φ[−2
3

a2κε̄rad −
1
2

a2κε̄dust ] = κ
a2

2
δprad

δprad = −Φε̄dust = −Φ
ρ̄c2

a3 =
1
3
δεrad



Central equation for pure scalar field

Next we make the substitution Φ = Ω/a in the following
equation for pure scalar field:

∆Φ = −κ
2
δρc2

a
= Φ[3H2 − 3K − κ

2
(φ′c)2 + H ′ − H

φ′′c
φ′c

+

+a2 dV
dφ

(φc)
H
φ′c

] +
dΦ

da
a[5H2 + H ′ − H

φ′′c
φ′c

+ a2 dV
dφ

(φc)
H
φ′c

]+

d2Φ

da2 H2a2.



Application of mechanical approach

The dust like matter component is considered in the form of
discrete distributed inhomogeneities. Then we are looking

for solutions of previous equation, which have Newtonian limit
near gravitating masses. Such an asymptotic behaviour will

take place if we impose Ω = Ω(~r).



Cosmological constant and cosmic strings

Ω = Ω(~r)⇒ Φ ∼ 1
a and (φ′c)2 = const .

Let’s denote φ′c = β = const ., then we get

φc = βη + γ, γ = const ,

V =
β2

a2 + V∞.



Galileon cosmologies and mechanical approach

Now. we suppose that Ω = Ω(r), which means that φ′c = const .:

φc(η) = βη + ω,

where ω and β are constants. Then we get from EoM that

6αβ2a′′ + 2a2a′β +
dV
dφ

a5 = 0



Potential for Galileon cosmologies

We want to obtain the dependence f (η) in the relation

V (η) =
β2

a2 + V∞ + αf (a),

because we know the dependence V (a) = β2

a2 + V∞ for the
pure scalar field.

f (a) behaves like matter:

f (a) ∼ 1
a3
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