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Accelerated expansion of the Universe

The Universe is expanding in the last 5 billion years.



Hot Big Bang Scenario



Quantum mechanics

probability desctiption
wave function
Hilbert space
self-adjoint operators

i~
∂ψ

∂t
= Hψ



General theory of relativity

geometrical theory
spacetime
metric
Riemann tensor

Rµν −
1
2

Rgµν + Λgµν = 8πTµν



Non-locality

"In quantum mechanics quantum non-locality refers to the
apparent instantaneous propagation of correlations between
entangled systems, irrespective of their spatial separation. In
quantum field theory, the notion of locality may have a different
meaning."

Locality in QFT:

Algebras associated to spacelike separated regions commute:
if O1 is spacelike separated from O2, then
[A,B] = 0,∀A ∈ A(O1),B ∈ A(O2); This expresses the
independence of physical systems associated to regions O1
and O2.



Issues in quantum gravity

non-locality
background independence
dimensional reduction



Axioms of irreflexive formulation of CST

The irreflexive formulation of causal set theory is defined by the
following six axioms:

1 Binary axiom
2 Measure axiom
3 Countability
4 Transitivity
5 Interval finitness
6 Irreflexivity



Hasse



Particle in CST



Deductive layers of physics



Feynman diagram



Finite dimensional Feynman diagrams

∫ ∞
−∞

e−
1
2 ax2

dx =

√
2π
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More generally, let A = Aij be a real d × d positive-definite
matrix, x = (x1, ..., xd ) the Euclidean coordinates in V = Rd ,
and 〈, 〉 : (Rd )∗ × Rd → R the standard pairing 〈xi , xj〉 = δi

j .
Then

Z0 =

∫
Rd

e−
1
2 〈Ax ,x〉 = (det

A
2π

)−
1
2 . (1)



Correlation functions

The correlators 〈f1, ..., fm〉 of m functions fi : Rd → R are
defined by plugging the product of these functions in the
integrand and normalizing:

〈f1, f2, ..., fm〉 =
1
Z0

∫
e−

1
2 〈Ax ,x〉f1(x)f2(x)...fm(x) dx (2)

They may be computed using Zb. Notice that

∂

∂bi

∫
e−

1
2 〈Ax ,x〉+〈b,x〉 =

∫
e−

1
2 〈Ax ,x〉+〈b,x〉 x idx . (3)



Wick

〈x i1 , ...x im〉 = ∂i1 ...∂ime
1
2 〈b,A

−1b〉|b=0

Let f1(x), ..., fm(x) be arbitrary linear functions of the
coordinates xi . Then all m-point functions vanish for odd m.
For m = 2n one has

〈f1, ..., fm〉 =
∑
〈fi1 , fi2〉...〈fim−1 , fim〉 (4)



Feynman diagrams

It is convenient to represent each term

〈fi1 , fi2〉...〈fim−1 , fim〉 (5)

in Wick’s formula by a simple graph. Consider m points, with
the k -th point representing fk . A pairing of 1, ...,2n gives a
natural way to connect these points by n edges, with an edge
e = (j , k) representing A−1

e = 〈fj ,A−1fk 〉. Equation becomes
then

〈f1, ..., fm〉 =
∑

Γ

∏
e∈edges{Γ}

A−1
e ,

where the sum is over all univalent graphs as above.



Infinite-dimensional case

Instead of the discrete set i ∈ {1, ...,d} of indices we have
now continuous variable x ∈ Mn. So, the sum over i becomes
an integral over x . Vectors (x1, x2, ..., xd ) and b = b(i) become
fields φ = φ(x) and J(x). A quadratic form A = A(i , j) becomes
an integral kernel K = K (x , y). Pairings 〈Ax , x〉 =

∑
i,j x iAijx j

and 〈b, x〉 =
∑

i bix i become 〈Kφ, φ〉 =
∫
φ(x)K (x , y)φ(y) dxdy

and 〈J, φ〉 =
∫

J(x)φ(x)dx respectively.



Amplituhedron

We start with triangle in two dimensions. When we think
projectively, the vertices are Z I

1,Z
I
2,Z

I
3, where I = 1,2,3. The

interior of the triangle is a collection of points of the form

Y I = c1Z I
1 + c2Z I

2 + c3Z I
3 (6)

where we span over all ca with ca > 0. The interior of a triangle
is associated with a triplet (c1, c2, c3)/GL(1) with all ratios
ca/cb > 0, so that all ca are either all positive or all negative.



One obvious generalization of the triangle is to an (n − 1)
dimensional simplex in a general projective space, a collection
(c1, ..., cn)/GL(1), with ca > 0. The n-tuple (c1, ..., cn)/GL(1)
specifies a line in n-dimensions, or a point in Pn−1. We could
generalize this to the space of k -planes in n dimensions - the
Grassmannian G(k ,n), which we can take to be a collection of
n k -dimensional vectors modulo GL(k) transformations,
grouped into a k × n matrix

C = (c1...cn)/GL(k).



Generalization of a triangle

One natural generalization of a triangle is to a more general
polygon with n vertices Z I

1, ...,Z
I
n. Once again we would like to

discuss the interior of this region:

Y I = c1Z I
1 + c2Z I

2 + ...+ cnZ I
n, ca > 0 (7)

(c1, ..., cn) ⊂ G+(1,n), Y I = caZ I
a, Z1, ...,Zn ⊂ M+(1,n) (8)



Generalization to higher projective spaces

This object has a natural generalization to higher projective
spaces; we can consider n points Z I

a in G(1,1 + m), with
I = 1, ...,1 + m, which are positive 〈Za1 ...Za1+m〉 > 0; Then, the
analog of the inside of the polygon are points of the form
YI = caZ I

a , with ca > 0.



Generalized amplituhedron

We can further generalize this structure into the
Grassmannian. We take positive external data as (k + m)
dimensional vectors Z I

a for I = 1, ..., k + m. It is natural to
restrict n ≥ (k + m), so that the external Za fill out the entire

(k + m) dimensional space. Consider the space of k -planes in
this (k + m) - dimensional space, Y ⊂ G(k , k + m) , with

co-ordinates Y I
a, a = 1, ...k , I = 1, ..., k + m.



We then consider a subspace of G(k , k + m) determined by
taking all possible positive linear combinations of the external
data, Y = C.Z or more explicitly

Y I
α = CαaZ I

a,

where
Cαa ⊂ G+(k ,n), Z I

a ⊂ M+(k + m,n). It is trivial to see that this
space is cyclically invariant if m is even: under the twisted cyclic
symmetry, Zn → (−1)k+m−1Z1 and cn → (−1)k−1c1, and the
product is invariant for even m. We call this space the
generalized tree amplituhedron An,k ,m(Z ).



Amplituhedron

Let Z be a (k + m)× n real matrix whose maximal minors are
all positive, where m ≥ 0 is fixed with k + m ≤ n. Then it
induces a map

Z̃ : Gr≥0
k ,n → Grk ,k+m

defined by Z̃ (〈v1, ..., vk 〉) ≡ 〈Z (v1), ...,Z (vk )〉, where 〈v1, ..., vk 〉
is an element of Gr≥0

k ,n written as the span of k basis vectors.
The (tree) amplituhedron An,k ,m(Z ) is defined to be the image
of Z̃ (Gr≥0

k ,n) inside Grk ,k+m.



Decorated permutation and Le-diagram

Definition
A decorated permutation of the set [m] is a bijection
π : [m]→ [m] whose fixed points are colored either black or
white. We denote a black fixed point π(i) = i and white fixed
point by π(i) = i . An antiexcendance of the decorated
permutation π is an element i ∈ [m] such that either π−1(i) > i
or π(i) = i (i is a white fixed point).

Definition
Fix l and m. Given a partition λ, we let Yλ denote the Young
diagram associated to λ. A Le-diagram D of shape λ and type
(l ,m) is a Young diagram of shape Yλ contained in a l × (m− l)
rectangle, whose boxes are filled with 0 and 1 in such a way
that the Le-property is satisfied: there is no 0 which has 1
above it in the same column and a 1 to its left in the same row.



We could obtain a bijection between Le-diagrams D of type
(l ,m) and decorated permutations π on [m] with exactly l

anti-excendances.



Algorithm

Replace each 0 in the Le-diagram L with an elbow joint
and each 1 in L with a cross +.
The southeast border of Yλ gives rise to a length-m path
from the northeast corner to the southwest corner of the
l × (m − l) rectangle. Label the edges of this path with the
numbers 1 through m.
Now label the edges of the north and west border of Yλ so
that opposite horizontal edges and opposite vertical edges
have the same label.
View the resulting ’pipe dream’ as a permutation π = π(L)
on [m], by following the ’pipes’ from the southeaster border
to the northwest border of the Young diagram. If the pipe
originating at label j ends at label i , we define π(j) = i .
If π(j) = j and j labels two horizontal (respectively, vertical)
edges of Yλ, then π(j) ≡ j (respectively, π(j) ≡ j).



Definition
A plabic graph is an undirected planar graph G drawn inside a
disk (considered modulo homotopy) with m boundary vertices
on the boundary of the disk, labeled 1, ...,m in clockwise order,
as well as some colored internal vertices. These internal
vertices are strictly inside the disk and are each colored either
black or white. Each boundary vertex i in G is incident to a
single edge. If a boundary vertex is adjacent to a leaf (vertex of
degree 1), we refer to that leaf as a lollipop.



Definition
A perfect orientation P of a plabic graph H is a choice of
orientation of each of its edges such that each black internal
vertex v is incident to exactly one edge directed away from v ,
and each white internal vertex w is incident to exactly one edge
directed towards w . A plabic graph is called perfectly
orientable if it admits a perfect orientation. Let Ho denote the
directed graph associated with a perfect orientation P of H.
Since each boundary vertex is incident to a single edge is
either source (if it is incident to an outgoing edge) or a sink (if it
is incident to an incoming edge) in Ho. The source set J0 ⊂ [m]
is the set of boundary vertices, which are sources in H0.



Plabic graph and Le-diagram

The following construction associates a perfectly orientable
plabic graph to any Le-diagram.



Let L be a Le-diagram and σ its decorated permutation. Delete
the 0’s of D, and replace it with a vertex. From each vertex we
construct a hook which goes east and south, to the border of

the Young diagram. The resulting diagram is called a hook
diagram H(L). After replacing the edges along the southeast

border of the Young diagram with boundary vertices labeled by
1, ...,m, we obtain a planar graph in a disk, with m boundary

vertices and one internal vertex for each + of L. Then we
replace the local region around each internal vertex as in

Figure, and add a black lollipop for each black fixed point of σ.
This gives rise to a plabic graph which we call H(L). By

orienting the edges of H(L) down and to the left, we obtain a
perfect orientation.



Grassmannians

Definition
The (real) Grassmannian Grlm is the space of all l-dimensional
subspaces of Rm, for 0 ≤ p ≤ m. An element of Grlm can be
viewed as l ×m matrix of rank l , modulo left multiplications by
non-singular l × l matrices.
Let [m] denote {1, ...,m}, and

([m]
l

)
the set of all l-element

subsets of [m]. Given W ∈ Grlm represented by l ×m matrix A,
for J ∈

([m]
l

)
we let ∆J(W ) be the maximal minor of A located in

the column set J. The ∆J(W ) do not depend on our choice of
matrix A and are called the Plücker coordinates of W .



Definition

The totally nonnegative Grassmanian Gr≥0
kn is the set of

elements V ∈ Grkn such that ∆I(V ) ≥ 0 for all I ∈
([n]

k

)
. For

M ⊆
([n]

k

)
, the positive Grassmann cel SM is the subset of

elements V ∈ Gr≥kn with the prescribed collection of Plücker
coordinates strictly positive and the remaining Plücker
coordinates equal to zero. We call M a positroid if SM is
nonempty.



Definition
A planar directed graph G is a directed graph drawn inside a
disk. We will assume that G has finitely many vertices and
edges. We allow G to have loops and multiple edges. We will
assume that G has n boundary vertices on the boundary of
the disk labelled b1, ...,bn clockwise. The remaining vertices,
called the internal vertices, are located strictly inside the disk.
We will always assume that each boundary vertex bi is either a
source or a sink. Even if bi is an isolated boundary vertex, we
will assign bi to be source or a sink. A planar directed
network N = (G, x) is a planar directed graph G as above with
strictly positive real weights xe > 0 assigned to all edges e of G.

Definition
For such network N, the source set I ⊂ [n] and the sink set
Ī ≡ [n] \ I of N are the sets such that bi , i ∈ I, are the sources of
N and the bj , j ∈ Ī, are the boundary sinks.



Definition
If the network N is acyclic, that is it does not have closed
directed paths, then, for any i ∈ I and j ∈ Ī, we define the
boundary measurement Mij as the finite sum

Mij ≡
∑

P:bi→bj

∏
e∈P

xe,

where the sum is over all directed paths P in N from the
boundary source bi to the boundary sink bj , and the product is
over all edges e in P.



Winding index

For a path P from a boundary vertex bi to a boundary vertex bj ,
we define its winding index, as follows.

Definition
We can now define the winding index wind(P) ∈ Z of the path
P as the signed number of full 360◦ turns the tangent vector
f ′(t) makes as we go from bi to bj (counting counterclockwise
turns as positive). Similarly, we define the winding index
wind(C) for a closed directed path C in the graph.



Recursive combinatorical procedure

Let us give a recursive combinatorical procedure for calculation
of the winding index for a path P with vertices v1, v2, ..., vl . If the

path P has no self-intersections, wind(P) = 0. Also for a
counterclockwise (clockwise) closed path C without

self-intersections, we have wind(C) = 1 (wind(C) = −1).



Suppose that P has at least one self-intersection, that is
vi = vj = v for i < j . Let C be the closed segment of P with

vi , vi+1, ..., vj and let P ′ be the path with erased segment C, P ′

has the vertices v1, ..., vi , vj+1, ..., vl .
Consider the four edges

e1 = (vi−1, vi),e2 = (vi , vi+1),e3 = (vj−1, vj),e4 = (vj , vj+1) in
the path P, which are incident to the vertex v ( the edges e1

and e3 are incoming , and the edges e2 and e4 are outgoing).
Define the number ε = ε(e1,e2,e3,e4) ∈ {−1,0,1}, as follows.
If the edges are arranged as e1,e2,e3,e4 clockwise, then set
ε = −1; otherwise set ε = 0. In particular, if some of the edges
e1,e2,e3,e4 are the same, then ε = 0. Informally, ε = ±1, if the
path P does not cross but rather touches itself at the vertex v .



Lemma
We have wind(P) = wind(P ′) + wind(C) + ε.

Let N be a planar directed network with graph G as above,
which is now allowed to have cycles. Let us assume for a
moment that the weights xe of edges in N are formal variables.
For a path P in G with the edges e1, ...,el , we will write
xP = xe1 ...xel . For a source bi , i ∈ I, and a sink bj , j ∈ Ī, we
define the formal boundary measurement M form

ij as the formal
series in the xe

M form
ij ≡

∑
P:bi→bj

(−1)wind(P)xP ,

where the sum is over all directed paths P in N from bi to bj .



Recall that a subtraction-free rational expression is an
expression with positive integer coefficients that can be written

with the operations of addition, multiplication, and division.

x + y/x
z2 + 25y/(x + s)

=
(x2 + y)(x + s)

z2x(x + s) + 25xy



We can now define the boundary measurements Mij as
the specializations of the formal boundary
measurements M form

ij , written as subtraction-free
expressions, when we assign the xe to be the positive real
weights of edges e in the network N
What information about a planar directed network can be
recovered from the collection of boundary measurements
Mij? How to recover this information?



Let Netkn be the set of planar directed networks with k
boundary sources and n − k boundary sinks. Define the

boundary measurement map

Meas : Netkn → Grkn (9)

followingly. For a network N ∈ Netkn with the source set I and
with the boundary measurements Mij , the point

Meas(N) ∈ Grkn is given in terms of its Plücker coordinates by
the conditions that ∆I 6= 0 and

Mij = ∆(I\{i})∪{j}/∆I , (10)

for any i ∈ I and j ∈ Ī.



More, explicitely if I = {i1 < i2 < ... < ik}, then the point
Meas(N) ∈ Grkn is represented by the boundary measurement
matrix A(N) = (aij) ∈ Matkn such that

1 The submatrix A(N)I in the column set I is the identity
matrix Idk .

2 The remaining entries of A(N) are arj = (−1)sMir ,j , for
r ∈ [k ] and j ∈ Ī, where s is the number of elements of I
strictly between ir and j .



Theorem
The image of the boundary measurement map Meas is
exactly the totally non-negative Grassmanian:

Meas(Netkn) = Gr≥0
kn



Feynman diagrams and plabic graphs

One can think about plabic graphs as some kind of Feynman
diagrams, where the black and white vertices represent certain

elementary particles of two types and edges represent
interactions between these particles.



plabic graphs: inner structure in Feynman diagrams
road to Quantum Gravity ?
many open problems in this part of algebraic geometry



Pictures taken from web.
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