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Inspiration from philosophy

finitism: avoids completed infinities altogether
it seems that no question about experimental
consequences on physical theories has an answer that
depends on whether or not we assume the continuum
hypothesis



RT-paradigm

(ST)RING THEORY: 4→ 3

RT-paradigm: collection of ideas, from which could be build
RT (physical theory: Ring Theory)
philosophy, physics, mathematical apparatus



Deductive layers of physics



Inductive trees of mathematics



Quantum Gravity

Common features for all approaches to QG: String theory (ST),
Loop quantum gravity (LQG), Causal set approach (CSA),

Causal dynamical triangulations (CDT), Regge calculus (RC)
etc.



Common features

Nonlocality
Background independence, especially problem of time
Dimensional reduction
Determinism/Indeterminism
Problem of singularities

1 Dark energy
2 Arrow of time
3 Connection to particle physics
4 Dark matter
5 EPR experiment and Wheeler delayed choice experiment

Please, see my poster:
RT-paradigm as Quantum Gravity





Gravitating ring







Mathematical apparatus of RT-paradigm

We will call, that a circle S1 ⊂ R3 with finite length and finite
circumference (we have a picture of torus in our mind), which

could be deformed, is a ring.



Algebraic topology in RT-paradigm

Mathematical problem: we have a finite collection of N rings S1

in R3, which could not touch; Give a complete characterization
of all non-homeomorphic structures, which could be

constructed from this finite collection of rings. Every two rings
could be linked only once, they could not be knotted or twisted

(in the case we have differentiable structure). We do not
consider any Brunnian type of link in 3 and more rings.



Hopf-linked rings and plabic graph



Decorated permutation and Le-diagram

Definition
A decorated permutation of the set [m] is a bijection
π : [m]→ [m] whose fixed points are colored either black or
white. We denote a black fixed point π(i) = i and white fixed
point by π(i) = i . An antiexcendance of the decorated
permutation π is an element i ∈ [m] such that either π−1(i) > i
or π(i) = i (i is a white fixed point).

Definition
Fix l and m. Given a partition λ, we let Yλ denote the Young
diagram associated to λ. A Le-diagram D of shape λ and type
(l ,m) is a Young diagram of shape Yλ contained in a l × (m− l)
rectangle, whose boxes are filled with 0 and 1 in such a way
that the Le-property is satisfied: there is no 0 which has 1
above it in the same column and a 1 to its left in the same row.



We could obtain a bijection between Le-diagrams D of type
(l ,m) and decorated permutations π on [m] with exactly l

anti-excendances.



Algorithm

Replace each 0 in the Le-diagram L with an elbow joint
and each 1 in L with a cross +.
The southeast border of Yλ gives rise to a length-m path
from the northeast corner to the southwest corner of the
l × (m − l) rectangle. Label the edges of this path with the
numbers 1 through m.
Now label the edges of the north and west border of Yλ so
that opposite horizontal edges and opposite vertical edges
have the same label.
View the resulting ’pipe dream’ as a permutation π = π(L)
on [m], by following the ’pipes’ from the southeaster border
to the northwest border of the Young diagram. If the pipe
originating at label j ends at label i , we define π(j) = i .
If π(j) = j and j labels two horizontal (respectively, vertical)
edges of Yλ, then π(j) ≡ j (respectively, π(j) ≡ j).



Definition
A plabic graph is an undirected planar graph G drawn inside a
disk (considered modulo homotopy) with m boundary vertices
on the boundary of the disk, labeled 1, ...,m in clockwise order,
as well as some colored internal vertices. These internal
vertices are strictly inside the disk and are each colored either
black or white. Each boundary vertex i in G is incident to a
single edge. If a boundary vertex is adjacent to a leaf (vertex of
degree 1), we refer to that leaf as a lollipop.



Definition
A perfect orientation P of a plabic graph H is a choice of
orientation of each of its edges such that each black internal
vertex v is incident to exactly one edge directed away from v ,
and each white internal vertex w is incident to exactly one edge
directed towards w . A plabic graph is called perfectly
orientable if it admits a perfect orientation. Let Ho denote the
directed graph associated with a perfect orientation P of H.
Since each boundary vertex is incident to a single edge is
either source (if it is incident to an outgoing edge) or a sink (if it
is incident to an incoming edge) in Ho. The source set J0 ⊂ [m]
is the set of boundary vertices, which are sources in H0.



Plabic graph and Le-diagram

The following construction associates a perfectly orientable
plabic graph to any Le-diagram.



Let L be a Le-diagram and σ its decorated permutation. Delete
the 0’s of D, and replace it with a vertex. From each vertex we
construct a hook which goes east and south, to the border of

the Young diagram. The resulting diagram is called a hook
diagram H(L). After replacing the edges along the southeast

border of the Young diagram with boundary vertices labeled by
1, ...,m, we obtain a planar graph in a disk, with m boundary

vertices and one internal vertex for each + of L. Then we
replace the local region around each internal vertex as in

Figure, and add a black lollipop for each black fixed point of σ.
This gives rise to a plabic graph which we call H(L). By

orienting the edges of H(L) down and to the left, we obtain a
perfect orientation.



Grassmannians

Definition
The (real) Grassmannian Grlm is the space of all l-dimensional
subspaces of Rm, for 0 ≤ p ≤ m. An element of Grlm can be
viewed as l ×m matrix of rank l , modulo left multiplications by
non-singular l × l matrices.
Let [m] denote {1, ...,m}, and

([m]
l

)
the set of all l-element

subsets of [m]. Given W ∈ Grlm represented by l ×m matrix A,
for J ∈

([m]
l

)
we let ∆J(W ) be the maximal minor of A located in

the column set J. The ∆J(W ) do not depend on our choice of
matrix A and are called the Plücker coordinates of W .



Definition

The totally nonnegative Grassmanian Gr tnn
kn is the set of

elements V ∈ Grkn such that ∆I(V ) ≥ 0 for all I ∈
([n]

k

)
. For

M ⊆
([n]

k

)
, the positive Grassmann cel SM is the subset of

elements V ∈ Gr tnn
kn with the prescribed collection of Plücker

coordinates strictly positive and the remaining Plücker
coordinates equal to zero. We call a M a positroid if SM is
nonempty.



Definition
A planar directed graph G is a directed graph drawn inside a
disk. We will assume that G has finitely many vertices and
edges. We allow G to have loops and multiple edges. We will
assume that G has n boundary vertices on the boundary of
the disk labelled b1, ...,bn clockwise. The remaining vertices,
called the internal vertices, are located strictly inside the disk.
We will always assume that each boundary vertex bi is either a
source or a sink. Even if bi is an isolated boundary vertex, we
will assign bi to be source or a sink. A planar directed
network N = (G, x) is a planar directed graph G as above with
strictly positive real weights xe > 0 assigned to all edges e of G.

Definition
For such network N, the source set I ⊂ [n] and the sink set
Ī ≡ [n] \ I of N are the sets such that bi , i ∈ I, are the sources of
N and the bj , j ∈ Ī, are the boundary sinks.



Definition
If the network N is acyclic, that is it does not have closed
directed paths, then, for any i ∈ I and j ∈ Ī, we define the
boundary measurement Mij as the finite sum

Mij ≡
∑

P:bi→bj

∏
e∈P

xe,

where the sum is over all directed paths P in N from the
boundary source bi to the boundary sink bj , and the product is
over all edges e in P.



Winding index

For a path P from a boundary vertex bi to a boundary vertex bj ,
we define its winding index, as follows.

Definition
We can now define the winding index wind(P) ∈ Z of the path
P as the signed number of full 360◦ turns the tangent vector
f ′(t) makes as we go from bi to bj (counting counterclockwise
turns as positive). Similarly, we define the winding index
wind(C) for a closed directed path C in the graph.



Recursive combinatorical procedure

Let us give a recursive combinatorical procedure for calculation
of the winding index for a path P with vertices v1, v2, ..., vl . If the

path P has no self-intersections, wind(P) = 0. Also for a
counterclockwise (clockwise) closed path C without

self-intersections, we have wind(C) = 1 (wind(C) = −1).



Suppose that P has at least one self-intersection, that is
vi = vj = v for i < j . Let C be the closed segment of P with

vi , vi+1, ..., vj and let P ′ be the path with erased segment C, P ′

has the vertices v1, ..., vi , vj+1, ..., vl .
Consider the four edges

e1 = (vi−1, vi),e2 = (vi , vi+1),e3 = (vj−1, vj),e4 = (vj , vj+1) in
the path P, which are incident to the vertex v ( the edges e1

and e3 are incoming , and the edges e2 and e4 are outgoing).
Define the number ε = ε(e1,e2,e3,e4) ∈ {−1,0,1}, as follows.
If the edges are arranged as e1,e2,e3,e4 clockwise, then set
ε = −1; otherwise set ε = 0. In particular, if some of the edges
e1,e2,e3,e4 are the same, then ε = 0. Informally, ε = ±1, if the
path P does not cross but rather touches itself at the vertex v .



Lemma
We have wind(P) = wind(P ′) + wind(C) + ε.

Let N be a planar directed network with graph G as above,
which is now allowed to have cycles. Let us assume for a
moment that the weights xe of edges in N are formal variables.
For a path P in G with the edges e1, ...,el , we will write
xP = xe1 ...xel . For a source bi , i ∈ I, and a sink bj , j ∈ Ī, we
define the formal boundary measurement M form

ij as the formal
series in the xe

M form
ij ≡

∑
P:bi→bj

(−1)wind(P)xP ,

where the sum is over all directed paths P in N from bi to bj .



Recall that a subtraction-free rational expression is an
expression is an expression with positive integer coefficients

that can be written with the operations of addition,
multiplication, and division.

x + z2/y
z2 + 25y/x + s

=
(x + z2)(x + s)

z2y + 25y2



We can now define the boundary measurements Mij as
the specializations of the formal boundary
measurements M form

ij , written as subtraction-free
expressions, when we assign the xe to be the positive real
weights of edges e in the network N
What information about a planar directed network can be
recovered from the collection of boundary measurements
Mij? How to recover this information?



Let Netkn be the set of planar directed networks with k
boundary sources and n − k boundary sinks. Define the

boundary measurement map

Meas : Netkn → Grkn (1)

followingly. For a network N ∈ Netkn with the source set I and
with the boundary measurements Mij , the point

Meas(N) ∈ Grkn is given in terms of its Plücker coordinates by
the conditions that ∆I 6= 0 and

Mij = ∆(I\{i})∪{j}/∆I , (2)

for any i ∈ I and j ∈ Ī.



More, explicitely if I = {i1 < i2 < ... < ik}, then the point
Meas(N) ∈ Grkn is represented by the boundary measurement
matrix A(N) = (aij) ∈ Matkn such that

1 The submatrix A(N)I in the column set I is the identity
matrix Idk .

2 The remaining entries of A(N) are arj = (−1)sMir ,j , for
r ∈ [k ] and j ∈ Ī, where s is the number of elements of I
strictly between ir and j .



Theorem
The image of the boundary measurement map Meas is
exactly the totally nonnegative Grassmanian:

Meas(Netkn) = Gr tnn
kn



Hopf-linked rings

ALGEBRA × TOPOLOGY



Feynman path integral



Slogan for people, who will be interested in
RT-paradigm

"Mathematics done in a limited way could not make any harm in
any extension."

[It means when we do mathematics in a restricted way, it could
not make us any harm when we do it as much as possible. We
want to say that we will need to work extremely hard when we

would like to solve the mathematical problems in RT-paradigm.]



Thank You for Your attention!

MERCY POR ATENSIOON! (KAHCG)

jan.novak@johnynewman.com

Pictures of scientists were taken from web.


