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Algebraic geometry

We could describe algebraic geometry as the study of
polynomial functions and the spaces on which they are
defined, which we call algebraic varieties. It found
applications, for example, in number theory (solution of
Fermat’s last theorem) in mathematics and in quantum gravity
and in quantum field theory in theoretical physics (twistor
theory, amplituhedron).
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Planar directed network

Definition
A planar directed graph G is a directed graph drawn inside a
disk. We will assume that G has finitely many vertices and
edges. We allow G to have loops and multiple edges. We
assume that G has n boundary vertices on the boundary of the
disk labeled b1, ...,bn clockwise. The remaining vertices, which
we call the internal vertices, are located strictly inside the disk.
We always assume that each boundary vertex bi is either a
source or a sink. Even if bi is an isolated boundary vertex, we
will assign bi to be a source or a sink. A planar directed network
N = (G, x) is a planar directed graph G as above together with
strictly positive real weights xe > 0 assigned to all edges e of G.



Plabic graph



Boundary measurement

Definition
For such network N, the source set I ⊂ [n] and the sink set
Ī ≡ [n] \ I of N are the sets such that bi , i ∈ I, are the sources of
N and the bj , j ∈ Ī, are the boundary sinks.

Definition

If the network N is acyclic, then, for any i ∈ I and j ∈ Ī we define
the boundary measurement Mij as the finite sum

Mij ≡
∑

P:bi→bj

∏
e∈P

xe, (1)

where the sum is over all directed paths P in N from the
boundary source bi to the boundary sink bj , and the product is
over all edges e in P.



Winding index

We define the winding index for a path P from a boundary
vertex bi to a boundary vertex bj : we assume that all edges of
the network are given by smooth curves; thus the path P is
given by a continuous piecewise-smooth curve. It is possible to
slightly modify the path and smoothen it around each junction ,
so it is given by a smooth curve f : [0,1]→ R2, and furthermore
make the initial tangent vector f ′(0) to have the same direction
as the final tangent vector f ′(1). We could now define the
winding index wind(P) ∈ Z of the path P as the signed number
of full 360◦ turns that the tangent vector f ′(t) makes as we go
from bi to bj . Smiliarly, we define the winding index wind(C) for
a closed directed path C in the graph.



Winding index - picture



We will write now a recursive combinatorical procedure for
calculation of the winding index for a path P with vertices
v1, v2, ..., vl . In the case that the path P has no
self-intersections, then wind(P) = 0. For a counterclockwise
closed path C without self-intersections, we have wind(C) = 1
(similarly for clockwise wind(C) = −1).



We will suppose now that P has at least one self-intersection,
that is vi = vj = v for i < j . Let C be the closed segment of P
with the vertices vi , vi+1, ..., vj , and let P ′ be the path P with
erased segment C, P ′ has the vertices v1, ..., vi , vj+1, ..., vl .
Consider the four edges e1 = (vi−1, vi), e2 = (vi , vi+1),
e3 = (vj−1, vj), e4 = (vj , vj+1) in the path P, which are incident
to the vertex v . We will define now the number
ε = ε(e1,e2,e3,e4) ∈ {−1,0,1}, as follows. If the edges are
arranged as e1,e2,e3,e4 clockwise, then set ε = −1; otherwise
set ε = 0. In particular, if some of the edges e1,e2,e3,e4 are
the same, then ε = 0.



Lemma
We have wind(P) = wind(P ′) + wind(C) + ε.

wind(P) =


wind(P ′) + 1, if C is a counterclockwise cycle and ε = 0
wind(P ′)− 1, if C is a clockwise cycle and ε = 0
wind(P ′), if ε = ±1



Essential cycles

If ε = 0, then we say that C is an essential cycle. Now it is
possible to express the winding index in terms of the erased
cycles as wind(P) ≡ #{counterclockwise essential cycles} −
#{clockwise essential cycles}.



Let N be a planar directed network with graph G as above (it is
allowed that it contains cycles). We will assume for a moment
that the weights xe of edges in N are formal variables. For a
path P in G with the edges e1, ...,el , we will write xP ≡ xe1 ...xel .
For a source bi , i ∈ I, and sink bj , j ∈ Ī, we define the formal
boundary measurement M form

ij as the formal power series in the
xe

M form
ij ≡

∑
P:bi→bj

(−1)wind(P)xP , (2)

where we take the sum over all directed paths P in N from bi to
bj .



Subtraction-free rational expression

Recall that a substraction-free rational expression is an
expression with positive integer coefficients that can be written
with the operations of addition, multiplication, and division (but
subtraction is striclty forbidden). We could equivalently write
that it is an expression that can be written as a quotient of two
polynomials with positive coefficients. For example,

x + y2

x
z2 + 25y/(x + t)

=
(x2 + y2)(x + t)

xz2(x + t) + 25xy

is subtraction-free.



Boundary measurement

It is possible to define the boundary measurement Mij as the
specializations of the formal boundary measurements M form

ij ,
written as subtraction-free expressions, when we assign the xe
to be the positive real weights of edges e in the network N.
Therefore the boundary measurements Mij are well-defined
non-negative real numbers for an arbitrary network.





Inverse boundary problem

What information about planar directed network could be
recovered from the collection of boundary measurements
Mij?
How can be this information recovered?
Describe all possible collections of boundary
measurements.
Describe transformation of networks that preserve the
boundary measurement.



Gauge transformations

We describe the gauge transformations of the weights xe. Let
us pick a collection of positive real numbers tv > 0, for each
internal vertex in N; and also assume that tbi = 1 for each
boundary vertex bi . Let N ′ be the network with the same
directed graph as the network N and with the weights

x ′e = xetut−1
v , (3)

for each directed edge e = (u, v). Explained in other words, for
each internal vertex v we multiply by tv the weights of all edges
outgoing from v , divide by tv the weights of all edges incoming
to v . Then the network N ′ has the same boundary
measurements as the network N.



Boundary measurement map

We will now describe the set of all possible collections of
boundary measurements. For a network N with k boundary
sources bi , i ∈ I, and n − k boundary sinks bj , j ∈ Ī, it will be
convenient to encode the k(n − k) boundary measurements
Mij , i ∈ I, j ∈ Ī, as a certain point in the Grassmannian Grkn. We
recall that ∆J(A) is the maximal minor of a matrix A in the
column set J. The collection of all ∆J , for k-subsets J ⊂ [n],
form projective Plücker coordinates on Grkn.



Definition
Let Netkn be the set of planar directed networks with k
boundary sources and n − k boundary sinks. We define the
boundary measurement map

Meas : Netkn → Grkn,

as follows. For a network N ∈ Netkn with the source set I and
with the boundary measurement Mij , the point Meas(N) ∈ Grkn
is given in terms of its Plücker coordinates {∆J} by the
conditions that ∆I 6= 0 and

Mij = ∆(I\{i}∪{j}/∆I for any i ∈ I and j ∈ Ī.



More explicitely, if I = {i1 < ... < ik}, then the point
Meas(N) ∈ Grkn is represented by the boundary measurement
matrix A(N) = (aij) ∈ Matkn such that

1 The submatrix A(N)I in the column set I is the identity
matrix Idk .

2 The remaining entries of A(N) are arj = (−1)sMir ,j for
r ∈ [k ] and j ∈ Ī, where s is the number of elements of I
strictly between ir and j .



Network with four boundary vertices - example



Main theorem

Theorem
The image of the boundary measurement map Meas is exactly
the totally nonnegative Grassmannian:

Meas(Netkn) = Gr tnn
kn , (4)

where Gr tnn
kn = Mat tnn

kn /GL+
k and Mat tnn

kn is the set of real
k × n-matrices A of rank k with nonnegative maximal minors
∆I(A) ≥ 0 and GL+

k is the group of k × k-matrices with positive
determinant.



Decorated permutation

A decorated permutation of the set [n] is a bijection π : [n]→ [n]
whose fixed points are colored either black or white. We denote
a black fixed point by π(i) = i and white fixed point by π(i) = i .
An anti-excendance of the decorated permutation π is an
element i ∈ [n] such that either π−1(i) > i or π(i) = i .



Le-diagram

Let us define a Le-diagram D of shape λ and type (k ,n) as a
filling of boxes of the Young diagram of shape λ contained in a
k × (n − k) rectangle with 0’s and +’s such that for any three
boxes indexed (i ′, j), (i ′, j ′), (i , j ′), where i < i ′ and j < j ′, filled
with a,b, c, correspondingly, if a, c 6= 0 then b 6= 0 (Le-property
is satisfied).



Le-diagram



Bijection between Le-diagrams and decorated
permutations

1 Replace each + in the Le-diagram D with an elbow joint,
and each 0 in D with a cross +.

2 Note that the southeast border of Yλ gives rise to a
length-n path from the northeast corner to the southwest
corner of the k × (n − k) rectangle. Label the edges of this
path with the numbers 1 through n.

3 Label the edges of the north and west border of Yλ so that
opposite horizontal edges and opposite vertical edges
have the same label.

4 View the resulting ’pipe dream’ as a permutation π = π(D)
on [n], by following the ’pipes’ from the southeaster border
to the northwest border of the Young diagram. If the pipe
originating at label i ends at the label j , we define π(i) ≡ j .

5 If π(i) = i and i labels two horizontal (vertical) edges of Yλ,
then π(i) ≡ i (π(i) ≡ i).



Perfect orientation of a plabic graph

A perfect orientation O of a plabic graph G is a choice of
orientation of each of its edges such that each black internal
vertex u is incident to exactly one edge directed away from u,
and each white internal vertex v is incident to exactly one edge
directed towards v . A plabic graph is called perfectly
orientable if it admits a perfect orientation.



Let D be a Le-diagram and π its decorated permutation. Delete
the 0’s of D and replace each + with a vertex. From each vertex
we construct a hook, which goes east and south, to the border
of the Young diagram. The resulting diagram is called the hook
diagram H(D). After replacing the edges along the southeast
border of the Young diagram with boundary vertices labeled by
1, ...,n, we obtain a planar graph in a disk, with n boundary
vertices and one internal vertex for each + of D. Then we
replace the local region around each internal vertex as in
Figure, and add black (respectively ,white) lollipop for each
black (white) fixed point of π. This gives rise to a plabic graph
which we call G(D). By orienting the edges of G(D) down and
to the left, we obtain a perfect orientation.



Hook diagram



Perturbative description of Nature in QFT -Feynman
diagrams



Amplituhedron

perturbation theory→ locality and unitarity as manifest as
possible
toy model in supersymmetric QFT→ locality and unitarity
do not play a central role, but emerge as derived features
from a different starting point



Amplituhedron - definition

Let Z be a (k + m)× n real matrix whose maximal minors are
all positive, where m ≥ 0 is fixed with k + m ≤ n. Then it
induces a map

Z̃ : Gr≥0
k ,n → Grk ,k+m (5)

defined by

Z̃ (〈v1, ..., vk 〉) ≡ 〈Z (v1),Z (v2), ...,Z (vk )〉, (6)

where 〈v1, ..., vk 〉 is an element of Gr≥0
k ,n written as the span of k

basis vectors. The (tree) amplituhedron An,k ,m(Z ) is defined to
be the image Z̃ (Gr≥0

k ,n) inside Grk ,k+,m.



Ring Paradigm

The usual picture about the gravitational interaction was that
some quantum (graviton) is exchanging between every particle
in the Universe. We suggest a different scheme in RP.





We substitute the picture of the gravitons carrying the initial
impulse by the creation of a gravitational ring, which tightens
the objects in Planck time.





Symmetries



Unchanged particle sector

The elementary particles of the standard model could move
only around gravitational rings.



Variational principle

The ring has the shortest length from all possible configurations
in space, which means a variational principle must be applied in

the derivation of the field equations of RP.



Processes with rings



Graviton as a phonon

The creation of rings in Planck time effectively gives rise to
springs between the galaxies. We quantize their longitudinal
vibrations and obtain the graviton-phonons, which mediate the
Newtonian force.



H =
2∑

i=1

1
2m

P2
i +

2∑
i,j=1

VijQiQj , (7)

where

V =

(1
2k + 1

2k3 −1
2k3

−1
2k3

1
2k + 1

2k3

)
,

k , k3 > 0.



Accelerated expansion of the Universe

The classical description is that the gravitational rings are
effectively made from some material, which has an inner
dependence on the deformation due to the stress. The
"gravitational"material breaks at Mpc distances, which causes
accelerated expansion in the Universe.



Modification of gravity

Rµν −
1
2
RGµν + ΛrGµν =

8πGTµν

c4
g

, (8)

where Gµν is the metric and also all the other quantities have an
analogous meaning as in GR. The cosmological constant Λr
could be computed from QFT. We neglect the RHS with respect
to the LHS, so

Rµν −
1
2
RGµν + ΛrGµν = 0. (9)



Rµν −
1
2

Rgµν =
8πG
c4 Tµν (10)

A new cosmological constant term Λ appeared approximately 8
billion years after Big Bang due to the QG phenomenon
(actually Λ = Λb in our previous notation):

Rµν −
1
2

Rgµν + Λgµν =
8πG
c4 Tµν (11)



Mathematical problem

We take a finite collection of P rings (simple closed curves) S1

in R3, which do not touch; Give a complete characterization of
all non-homeomorphic structures, that can be constructed from
this set of rings. Every two rings are linked maximally once,
they could not be knotted or twisted (in the case, when we have
a differentiable structure). We do not consider any Brunnian
type of link (Whitehead link, Borromean rings, etc.) and we
study only a connected component.



Identification with graphs

Every ring of the crystal could be identified with a vertex, and
we put an edge on the graph if the corresponding rings would

be Hopf-linked.



We defined RP on the crystal made of rings, which can be
identified with the plabic graphs.



Application of the paradigm

1 singularity theorems
2 cyclic universes
3 black hole information paradox
4 dimensional reduction
5 curvature of the universe
6 EPR-paradox
7 determinism of physical theories





RP is a highly non-local theory, and the rings are sticking out of
the horizon for any black hole. It means that the information

could travel at superluminal speed from the interior of the black
hole. This gives us a full solution of the information paradox on

the non-perturbative QG level.





RP is built on the postulate that the elementary particles move
only at the pre-prepared lanes. This could have serious
consequences for the determinism of physical theories.



The gravitational rings are mediating gravity by a velocity
cg > c . It is equal to the maximal allowed velocity, how

information can actually be transmitted according to QG.



Generalization of transformations

t ′ =
t − x

v
v2

c2 ε− x
v

v2

c2
g√

1− v2

c2 ε− v2

c2
g

,

x ′ =
x − tv√

1− v2

c2 ε− v2

c2
g

,

where ε = ε(v) denotes some step function defined by the
prescription

ε(v) =

{
1 for v ≤ c,
0 for v > c.



Work for future

scalar field in classical cosmology
Lorentz violating theories
conformal field theory in 2 dimension
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Albert Schweitzer: "We are living in dangerous times. Men
control nature before they are even able to control themselves."



Thank You for paying attention! (Some pictures were taken from
the web and some were created by myself.)

jan.novak@johnynewman.com


